The Geometry of (Some) Noncommutative Projective Lines

Adam Nyman

Western Washington University

July 2, 2013
Conventions and Notation

- k a perfect field
Conventions and Notation

- k a perfect field
- L/k finite extension
Conventions and Notation

- k a perfect field
- L/k finite extension
- \overline{L} an algebraic closure of L
Part 1

Noncommutative Projective Lines
Noncommutative Space := Grothendieck Category
Noncommutative Space \equiv Grothendieck Category $=$

- $(k$-linear) abelian category with
Noncommutative Space := Grothendieck Category =

- (\(k\)-linear) abelian category with
- exact direct limits and
Noncommutative Space := Grothendieck Category =

- $(k$-linear) abelian category with
- exact direct limits and
- a generator.
Noncommutative Space := Grothendieck Category =

- $(k$-linear) abelian category with
- exact direct limits and
- a generator.

Examples
Noncommutative Space := Grothendieck Category =
- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples
- \text{Mod } R, R \text{ a ring}
Noncommutative Space := Grothendieck Category =

- $(k$-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X
Noncommutative Spaces

Noncommutative Space :\(=\) Grothendieck Category =

- (\(k\)-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- \(\text{Mod } R, R\) a ring
- \(\text{Qcoh } X\)
- \(\text{Proj } A :\! = \text{Gr}A/\text{Tors}A\) where \(A\) is \(\mathbb{Z}\)-graded
(Commutative) polynomial ring $k[x_1, \ldots , x_n]$ has \mathbb{Z}^n-grading:
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$
Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\forall^1_n := \text{Gr} k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathbb{V}_n^1 := \text{Gr} k[x_1, \ldots, x_n] / \{ \text{Kdim} \leq n - 2 \}$$

The noncommutative space \mathbb{V}_n^1
(Commutative) polynomial ring $k[x_1, \ldots , x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots , 0, 1, 0, \ldots , 0).$$

$$\mathcal{V}^1_n := \text{Gr} k[x_1, \ldots , x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathcal{V}^1_n

- is locally noetherian,
Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathcal{V}^1_n := \text{Gr}_k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathcal{V}^1_n
- is locally noetherian,
- is Ext-finite

Adam Nyman
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathbb{V}_n^1 := \text{Gr} k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathbb{V}_n^1 := \text{Gr} k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does not satisfy Serre duality unless $n = 1$ or 2.
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0)$.

$$\mathcal{V}^1_n := \text{Gr} k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathcal{V}^1_n:

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does **not** satisfy Serre duality unless $n = 1$ or 2.

Significance
(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathbb{V}_n^1 := \text{Gr}_k[x_1, \ldots, x_n]/\{K\text{dim} \leq n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does not satisfy Serre duality unless $n = 1$ or 2.

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is ‘in good position’ w.r.t. Y, then
Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n-grading:

$$|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$\mathbb{V}^1_n := \text{Gr} k[x_1, \ldots, x_n]/\{\text{Kdim} \leq n - 2\}$$

The noncommutative space \mathbb{V}^1_n

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does not satisfy Serre duality unless $n = 1$ or 2.

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is ‘in good position’ w.r.t. Y, then $C \equiv \mathbb{V}^1_n$.

Adam Nyman
Suppose A is connected graded over k having the following properties:
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n.

Adam Nyman
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent.
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent but not noetherian.
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent but not noetherian.

\[\mathbb{P}^1_n \] is any category of the form $\text{proj}A := \text{gr}A/\text{tors}A$ for some A satisfying the above conditions with n generators.
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent but not noetherian.

\mathbb{P}^1_n is any category of the form $\text{proj}A := \text{gr}A/\text{tors}A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent but not noetherian.

\mathbb{P}^1_n is any category of the form $\text{proj} A := \text{gr}A/\text{tors}A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite
- satisfies Serre duality, and
Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n > 2$, A is coherent but not noetherian.

\mathbb{P}^1_n is any category of the form $\text{proj} A := \text{gr} A / \text{tors} A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite
- satisfies Serre duality, and
- has homological dimension 1.
Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh\(\mathbb{P}^1\),
Kussin studies categories similar to coh\mathbb{P}^1, i.e. abelian categories P such that P
Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}

- consists of noetherian objects,
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\text{coh} \mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}
- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories \mathbb{P} such that \mathbb{P}

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to cohP^1, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh\(\mathbb{P}^1\), i.e. abelian categories \(\mathcal{P}\) such that \(\mathcal{P}\)
- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object,
Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
 - $\text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{T}) = 0$, and
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\text{coh} \mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
 - $\text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T}, \mathcal{M}) = 0 = \text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M} = 0$.
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories P such that P

 - consists of noetherian objects,

 - is Ext-finite,

 - has a Serre functor,

 - has homological dimension 1,

 - has infinitely many non-isomorphic simple objects, and

 - has a tilting object, i.e. an object T such that

 - $\text{Ext}^1_P(T, T) = 0$, and

 - whenever $\text{Hom}_{\mathbb{P}^1}(T, M) = 0 = \text{Ext}^1_P(T, M)$ we have $M = 0$.

Examples
Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
 - $\text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T}, \mathcal{M}) = 0 = \text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M} = 0$.

Examples

1. $\text{coh}\mathbb{P}^1$
Kussin studies categories similar to $\text{coh}\mathbb{P}^1$, i.e. abelian categories \mathcal{P} such that \mathcal{P}

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
 - $\text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T}, \mathcal{M}) = 0 = \text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M} = 0$.

Examples

1. $\text{coh}\mathbb{P}^1$
2. Weighted projective lines (Geigle-Lenzing)
Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to \(\text{coh}\mathbb{P}^1 \), i.e. abelian categories \(\mathcal{P} \) such that \(\mathcal{P} \)
- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \(\mathcal{T} \) such that
 - \(\text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{T}) = 0 \), and
 - whenever \(\text{Hom}_{\mathbb{P}^1}(\mathcal{T}, \mathcal{M}) = 0 = \text{Ext}^1_{\mathcal{P}}(\mathcal{T}, \mathcal{M}) \) we have \(\mathcal{M} = 0 \).

Examples

1. \(\text{coh}\mathbb{P}^1 \)
2. Weighted projective lines (Geigle-Lenzing)
3. Arithmetic noncommutative projective lines
Spaces of form $\text{Proj}S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where
Spaces of form $\text{Proj}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj} A = \text{Gr} A / \text{Tors} A$.
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj}A = \text{Gr}A/\text{Tors}A$.

Theme of talk
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where
- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj} A = \text{Gr} A / \text{Tors} A$.

Theme of talk

Study $V \mapsto \mathbb{P}^{n.c.}(V)$
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj}A = \text{Gr}A/\text{Tors}A$.

Theme of talk

\[\text{Study } V \rightsquigarrow \mathbb{P}^{n.c.}(V) \]

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.
Spaces of form $\text{Proj} S^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where
- V is a two-sided vector space
- $S^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj}A = \text{Gr}A / \text{Tors}A$

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Van den Bergh (2002) is over $k = \overline{k}$.

Adam Nyman
Spaces of form $\text{Proj} \mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where
- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\text{Proj}A = \text{Gr}A/\text{Tors}A$.

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Vanden Bergh (2002) is over $k = \overline{k}$. In this case $\mathbb{P}^{n.c.}(V) \equiv \text{Qcoh}\mathbb{P}^1$.
Part 2

Two-sided Vector Spaces
Basic Terminology
A two-sided vector space of rank n is a
A **two-sided vector space of rank** \(n \) is a

- **\(k \)-central \(L-L \)-bimodule** \(V \) such that
A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.
A two-sided vector space of rank n is a
- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1
A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}, \quad L = \mathbb{C}, \quad V = \mathbb{C}, \quad \sigma = \text{complex conjugation}$
A **two-sided vector space of rank** n is a
- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}, \ L = \mathbb{C}, \ V = \mathbb{C}, \ \sigma = \text{complex conjugation} \ x \cdot v := xv$
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}$, $L = \mathbb{C}$, $V = \mathbb{C}$, $\sigma =$ complex conjugation $x \cdot v := xv$

$v \cdot x := v \sigma(x)$
A **two-sided vector space of rank** n is a

1. k-central L-L-bimodule V such that
2. $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation} \ x \cdot v := xv$

$v \cdot x := v\sigma(x)$ **Notation:** \mathbb{C}_σ
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}$, $L = \mathbb{C}$, $V = \mathbb{C}$, $\sigma = \text{complex conjugation}$

$x \cdot v := xv$

$v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_σ

Example 2
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(VL) = n$.

Example 1

$k = \mathbb{R}$, $L = \mathbb{C}$, $V = \mathbb{C}$, $\sigma = \text{complex conjugation}$ $x \cdot v := xv$

$v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_σ

Example 2

$V = L^n$, $\phi : L \to M_n(L)$
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(VL) = n$.

Example 1

$k = \mathbb{R}$, $L = \mathbb{C}$, $V = \mathbb{C}$, $\sigma =$ complex conjugation $x \cdot v := xv$

$v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_σ

Example 2

$V = L^n$, $\phi : L \rightarrow M_n(L)$ $x \cdot v = xv$
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L (L V) = \dim_L (V L) = n$.

Example 1

$k = \mathbb{R}, \ L = \mathbb{C}, \ V = \mathbb{C}, \ \sigma = \text{complex conjugation} \ x \cdot v := xv \\
v \cdot x := v\sigma(x) \ \text{Notation:} \ \mathbb{C}_\sigma$

Example 2

$V = L^n, \ \phi : L \rightarrow M_n(L) \ x \cdot v = xv \ v \cdot x = v\phi(x)$
A **two-sided vector space of rank** n is a

- k-central L-L-bimodule V such that
- $\dim_L(LV) = \dim_L(V_L) = n$.

Example 1

$k = \mathbb{R}$, $L = \mathbb{C}$, $V = \mathbb{C}$, $\sigma =$ complex conjugation $x \cdot v := xv$

$v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_σ

Example 2

$V = L^n$, $\phi : L \rightarrow M_n(L)$ $x \cdot v = xv$ $v \cdot x = v\phi(x)$ Notation: L^n_ϕ
Theorem (Patrick 2000)

Suppose \(\text{char } k \neq 2 \). If \(V \) has rank 2, either
Theorem (Patrick 2000)

Suppose char \(k \neq 2 \). If \(V \) has rank 2, either

1. \(V \cong L_2^\phi \) where \(\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix} \) where \(\sigma(x) \in \text{Gal}(L/k) \),
Theorem (Patrick 2000)

Suppose $\text{char } k \neq 2$. If V has rank 2, either

1. $V \cong L_2^\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,

2. $V \cong L_2^\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$, and $\tau \neq \sigma$, or
Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose $\text{char } k \neq 2$. If V has rank 2, either

1. $V \cong L_\phi^2$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,

2. $V \cong L_\phi^2$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$, and $\tau \neq \sigma$, or

3. V is simple.
Theorem (Patrick 2000)

Suppose \(\text{char } k \neq 2 \). If \(V \) has rank 2, either

1. \(V \cong L^2_\phi \) where \(\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix} \) where \(\sigma(x) \in \text{Gal}(L/k) \),

2. \(V \cong L^2_\phi \) where \(\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix} \), \(\sigma(x), \tau(x) \in \text{Gal}(L/k) \), and \(\tau \neq \sigma \), or

3. \(V \) is simple. In this case \(V \cong L^2_\phi \) where

\[
\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}
\]
Theorem (Patrick 2000)

Suppose \(\text{char } k \neq 2 \). If \(V \) has rank 2, either

1. \(V \cong L^2_\phi \) where \(\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix} \) where \(\sigma(x) \in \text{Gal}(L/k) \),

2. \(V \cong L^2_\phi \) where \(\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix} \), \(\sigma(x), \tau(x) \in \text{Gal}(L/k) \), and \(\tau \neq \sigma \), or

3. \(V \) is simple. In this case \(V \cong L^2_\phi \) where

\[
\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}
\]

and where \(b \) is a nonzero \((a, a)\)-derivation,
Theorem (Patrick 2000)

Suppose $\text{char } k \neq 2$. If V has rank 2, either

1. $V \cong L_2^\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,

2. $V \cong L_2^\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$, and $\tau \neq \sigma$, or

3. V is simple. In this case $V \cong L_2^\phi$ where

$$\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$$

and where b is a nonzero (a, a)-derivation, $m \in L$ is not a perfect square,
Theorem (Patrick 2000)

Suppose $\text{char } k \neq 2$. If V has rank 2, either

1. $V \cong L^2_\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,

2. $V \cong L^2_\phi$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$, and $\tau \neq \sigma$, or

3. V is simple. In this case $V \cong L^2_\phi$ where

$$\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$$ and where b is a nonzero (a, a)-derivation, $m \in L$ is not a perfect square, and $a(xy) = a(x)a(y) + mb(x)b(y)$.
Simple Two-sided Vector Spaces I: Classification

- $\text{Emb}(L) = \{ k - \text{linear embeddings } L \to \overline{L} \}$
Simple Two-sided Vector Spaces I: Classification

- $\text{Emb}(L) = \{k - \text{linear embeddings } L \to \overline{L}\}$
- $G = \text{Gal}(\overline{L}/L)$
- $\text{Emb}(L) = \{k - \text{linear embeddings } L \to \overline{L}\}$
- $G = \text{Gal}(\overline{L}/L)$
- G acts on $\text{Emb}(L)$: $g \cdot \lambda := g \circ \lambda$. $\lambda^G = \text{orbit of } \lambda$
Simple Two-sided Vector Spaces I: Classification

- $\text{Emb}(L) = \{k - \text{linear embeddings } L \to \overline{L}\}$
- $G = \text{Gal}(\overline{L}/L)$
- G acts on $\text{Emb}(L)$: $g \cdot \lambda := g \circ \lambda$. λ^G = orbit of λ
- $\text{Orb}(L) = \{\text{finite } G\text{-orbits of } \text{Emb}(L)\}$
Simple Two-sided Vector Spaces I: Classification

- \(\text{Emb}(L) = \{ \text{k-linear embeddings } L \to \overline{L} \} \)
- \(G = \text{Gal}(\overline{L}/L) \)
- \(G \) acts on \(\text{Emb}(L) \): \(g \cdot \lambda := g \circ \lambda \). \(\lambda^G = \text{orbit of } \lambda \)
- \(\text{Orb}(L) = \{ \text{finite } G\text{-orbits of } \text{Emb}(L) \} \)
- \(\text{Simp}(L) = \{ \approx \text{classes of } k\text{-central simples of finite rank}/L \} \)
Simple Two-sided Vector Spaces I: Classification

- $\text{Emb}(L) = \{k - \text{linear embeddings } L \to \overline{L}\}$
- $G = \text{Gal}(\overline{L}/L)$
- G acts on $\text{Emb}(L)$: $g \cdot \lambda := g \circ \lambda$. $\lambda^G = \text{orbit of } \lambda$
- $\text{Orb}(L) = \{\text{finite } G\text{-orbits of } \text{Emb}(L)\}$
- $\text{Simp}(L) = \{\cong \text{classes of } k\text{-central simples of finite rank}/L\}$

Theorem (N. and Pappacena 2007)

There is a bijection

$$\Phi : \text{Orb}(L) \to \text{Simp}(L)$$
Simple Two-sided Vector Spaces I: Classification

- \(\text{Emb}(L) = \{ k - \text{linear embeddings} \ L \to \overline{L} \} \)
- \(G = \text{Gal}(\overline{L}/L) \)
- \(G \) acts on \(\text{Emb}(L) \): \(g \cdot \lambda := g \circ \lambda \). \(\lambda^G = \text{orbit of } \lambda \)
- \(\text{Orb}(L) = \{ \text{finite } G\text{-orbits of } \text{Emb}(L) \} \)
- \(\text{Simp}(L) = \{ \cong \text{classes of } k\text{-central simples of finite rank}/L \} \)

Theorem (N. and Pappacena 2007)

There is a bijection

\[\Phi : \text{Orb}(L) \to \text{Simp}(L) \]

and \(\text{rank}(\Phi(\lambda^G)) = |\lambda^G| \)
Simple Two-sided Vector Spaces I: Classification

- \(\text{Emb}(L) = \{ k \text{- linear embeddings } L \rightarrow \overline{L} \} \)
- \(G = \text{Gal}(\overline{L}/L) \)
- \(G \) acts on \(\text{Emb}(L) \): \(g \cdot \lambda := g \circ \lambda \). \(\lambda^G = \text{orbit of } \lambda \)
- \(\text{Orb}(L) = \{ \text{finite } G \text{-orbits of } \text{Emb}(L) \} \)
- \(\text{Simp}(L) = \{ \cong \text{classes of } k \text{-central simples of finite rank}/L \} \)

Theorem (N. and Pappacena 2007)

There is a bijection

\[\Phi : \text{Orb}(L) \rightarrow \text{Simp}(L) \]

and \(\text{rank}(\Phi(\lambda^G)) = |\lambda^G| \)

Notation: \(\Phi(\lambda^G) = [V(\lambda)]. \)
• \(\text{Emb}(L) = \{ k - \text{linear embeddings } L \to \overline{L} \} \)
• \(G = \text{Gal}(\overline{L}/L) \)
• \(G \) acts on \(\text{Emb}(L) \): \(g \cdot \lambda := g \circ \lambda \). \(\lambda^G \) = orbit of \(\lambda \)
• \(\text{Orb}(L) = \{ \text{finite } G\text{-orbits of } \text{Emb}(L) \} \)
• \(\text{Simp}(L) = \{ \equiv \text{classes of } k\text{-central simples of finite rank } / L \} \)

Theorem (N. and Pappacena 2007)

There is a bijection

\[
\Phi : \text{Orb}(L) \to \text{Simp}(L)
\]

and \(\text{rank}(\Phi(\lambda^G)) = |\lambda^G| \)

Notation: \(\Phi(\lambda^G) = [V(\lambda)] \).

Remark

The result holds even if \(L/k \) is infinite
Construction of $V(\lambda)$
What is $V(\lambda)$?
What is $V(\lambda)$?

$V(\lambda) := 1L \lor \lambda(L)_{\lambda}$

Action defined as $a \cdot v \cdot b := av\lambda(b)$.
Simple Two-sided Vector Spaces: Examples
Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
Simple Two-sided Vector Spaces: Examples

Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
Example 1

- \(k = \mathbb{R}, \ L = \mathbb{C}, \ G = \text{Gal}(\overline{L}/L) = \{\text{id}\} \)
- \(\text{Emb}(L) = \{\text{id}, \sigma\} \)
- \(\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \)
Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
- $\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_{\sigma}\}$
Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\bar{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
- $\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}\text{id}, \mathbb{C}\sigma\}$

Example 2

$p \geq 3$ prime, $\zeta = \text{a primative } p\text{th root of unity.}$
Simple Two-sided Vector Spaces: Examples

Example 1
- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
- $\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_{\sigma}\}$

Example 2
- $p \geq 3$ prime, ζ = a primitive pth root of unity.
- $k = \mathbb{Q}$, $L = \mathbb{Q}(p\sqrt{2})$
Example 1

- \(k = \mathbb{R}, \ L = \mathbb{C}, \ G = \text{Gal}(\overline{L}/L) = \{ \text{id} \} \)
- \(\text{Emb}(L) = \{ \text{id}, \sigma \} \)
- \(\text{Orb}(L) = \{ \{\text{id}\}, \{\sigma\} \} \Rightarrow \text{Simp}(L) = \{ \mathbb{C}_{\text{id}}, \mathbb{C}_{\sigma} \} \)

Example 2

- \(p \geq 3 \) prime, \(\zeta = \text{a primative } p\text{th root of unity} \).
- \(k = \mathbb{Q}, \ L = \mathbb{Q}(\sqrt[p]{2}) \)
- \(G\text{-action} = \text{Gal}(L(\zeta)/L)\text{-action} \)
Example 1
- \(k = \mathbb{R}, \ L = \mathbb{C}, \ G = \text{Gal}(\bar{L}/L) = \{\text{id}\} \)
- \(\text{Emb}(L) = \{\text{id}, \sigma\} \)
- \(\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_{\sigma}\} \)

Example 2
- \(p \geq 3 \) prime, \(\zeta = \) a primitive \(p \)th root of unity.
- \(k = \mathbb{Q}, \ L = \mathbb{Q}(p\sqrt{2}) \)
- \(G\text{-action} = \text{Gal}(L(\zeta)/L)\text{-action} \)
- \(\text{Gal}(L(\zeta)/L) = \{\sigma_i | 1 \leq i \leq p - 1\} \) where \(\sigma_i(\zeta) = \zeta^i \)
Simple Two-sided Vector Spaces: Examples

Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
- $\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_\sigma\}$

Example 2

$p \geq 3$ prime, ζ = a primitive pth root of unity.

- $k = \mathbb{Q}$, $L = \mathbb{Q}(p\sqrt{2})$
- G-action = $\text{Gal}(L(\zeta)/L)$-action
- $\text{Gal}(L(\zeta)/L) = \{\sigma_i | 1 \leq i \leq p - 1\}$ where $\sigma_i(\zeta) = \zeta^i$
- $\text{Emb}(L) = \{\text{id}, \sigma_1 \lambda, \ldots, \sigma_{p-1} \lambda\}$ where $\lambda(p\sqrt{2}) = \zeta(p\sqrt{2})$
Simple Two-sided Vector Spaces: Examples

Example 1

- $k = \mathbb{R}$, $L = \mathbb{C}$, $G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$
- $\text{Emb}(L) = \{\text{id}, \sigma\}$
- $\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_\sigma\}$

Example 2

$p \geq 3$ prime, $\zeta = \text{a primative } p\text{th root of unity}$.

- $k = \mathbb{Q}$, $L = \mathbb{Q}(p\sqrt{2})$
- G-action = $\text{Gal}(L(\zeta)/L)$-action
- $\text{Gal}(L(\zeta)/L) = \{\sigma_i|1 \leq i \leq p - 1\}$ where $\sigma_i(\zeta) = \zeta^i$
- $\text{Emb}(L) = \{\text{id}, \sigma_1\lambda, \ldots, \sigma_{p-1}\lambda\}$ where $\lambda(p\sqrt{2}) = \zeta(p\sqrt{2})$
- $\text{Orb}(L)$
Simple Two-sided Vector Spaces: Examples

Example 1
- \(k = \mathbb{R}, \ L = \mathbb{C}, \ G = \text{Gal}(\overline{L}/L) = \{\text{id}\} \)
- \(\text{Emb}(L) = \{\text{id}, \sigma\} \)
- \(\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_{\sigma}\} \)

Example 2
- \(p \geq 3 \) prime, \(\zeta \) = a primitive \(p \)th root of unity.
- \(k = \mathbb{Q}, \ L = \mathbb{Q}(p^{\sqrt{2}}) \)
- \(G\text{-action} = \text{Gal}(L(\zeta)/L)\text{-action} \)
- \(\text{Gal}(L(\zeta)/L) = \{\sigma_i|1 \leq i \leq p - 1\} \) where \(\sigma_i(\zeta) = \zeta^i \)
- \(\text{Emb}(L) = \{\text{id}, \sigma_1\lambda, \ldots, \sigma_{p-1}\lambda\} \) where \(\lambda(p^{\sqrt{2}}) = \zeta(p^{\sqrt{2}}) \)
- \(\text{Orb}(L) = \{\{\text{id}\}, \{\sigma_i\lambda|1 \leq i \leq p - 1\}\} \)
Example 1

- $$k = \mathbb{R}, \ L = \mathbb{C}, \ G = \text{Gal}(\overline{L}/L) = \{\text{id}\}$$
- $$\text{Emb}(L) = \{\text{id}, \sigma\}$$
- $$\text{Orb}(L) = \{\{\text{id}\}, \{\sigma\}\} \Rightarrow \text{Simp}(L) = \{\mathbb{C}_{\text{id}}, \mathbb{C}_\sigma\}$$

Example 2

- $$p \geq 3$$ prime, $$\zeta$$ = a primitive $$p$$th root of unity.
- $$k = \mathbb{Q}, \ L = \mathbb{Q}(\sqrt[p]{2})$$
- $$G$$-action = $$\text{Gal}(L(\zeta)/L)$$-action
- $$\text{Gal}(L(\zeta)/L) = \{\sigma_i|1 \leq i \leq p - 1\}$$ where $$\sigma_i(\zeta) = \zeta^i$$
- $$\text{Emb}(L) = \{\text{id}, \sigma_1\lambda, \ldots, \sigma_{p-1}\lambda\}$$ where $$\lambda(\sqrt[p]{2}) = \zeta(\sqrt[p]{2})$$
- $$\text{Orb}(L) = \{\{\text{id}\}, \{\sigma_i\lambda|1 \leq i \leq p - 1\}\}$$

$$\text{Simp}(L) = \{\mathbb{Q}(\sqrt[p]{2})_{\text{id}}, \mathbb{V}(\lambda)\}$$
Right dual of V

$V^* := \text{Hom}_L(V_L, L)$
Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.
Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$V^* := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Adam Nyman
Duals

Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$^*V := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then
Duals

Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$^*V := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then $^*L_\sigma \cong L_\sigma^* \cong L_{\sigma^{-1}}$
Duals

Right dual of V

$$V^* := \text{Hom}_L(V_L, L) \text{ with action } (a \cdot \psi \cdot b)(x) = a\psi(bx).$$

Left dual of V

$$*V := \text{Hom}_L(LV, L) \text{ with action } (a \cdot \phi \cdot b)(x) = b\phi(xa).$$

Example

If $\sigma \in \text{Gal}(L/k)$ then $*L_{\sigma} \cong L_{\sigma^*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)
Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$*V := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then $*L_\sigma \cong L_{\sigma^*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)
Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then $*L_\sigma \cong L_\sigma^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$,
Duals

Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$*V := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then $*L_\sigma \cong L_\sigma^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\overline{\lambda} : \overline{L} \rightarrow \overline{L}$ be a lift of λ. Let $\mu := (\overline{\lambda})^{-1}|_L$. Then
Duals

Right dual of V

$V^* := \text{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

$*V := \text{Hom}_L(LV, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \text{Gal}(L/k)$ then $*L_{\sigma} \cong L_{\sigma}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\overline{\lambda} : \overline{L} \to \overline{L}$ be a lift of λ. Let $\mu := (\overline{\lambda})^{-1}|_L$. Then

$*V \cong V^* \cong V(\mu)$.

Adam Nyman
Theme Revisited

Adam Nyman
If V is not simple,
If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$
If V is not simple, study

$$\{\sigma, \tau\} \mapsto P_{n.c.}^{\cdot}(L_{\sigma} \oplus L_{\tau})$$

If V is simple,
If V is not simple, study

$$\{\sigma, \tau\} \sim \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau)$$

If V is simple, study

$$\lambda \sim \mathbb{P}^{n.c.}(V(\lambda))$$
If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau)$$

If V is simple, study

$$\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda))$$
If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau)$$

If V is simple, study

$$\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic \leadsto Noncommutative geometry
If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau)$$

If V is simple, study

$$\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic \leadsto Noncommutative geometry

Questions
If V is not simple, study
\[\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau) \]

If V is simple, study
\[\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda)) \]

Arithmetic \leadsto Noncommutative geometry

Questions

1. For which arithmetic data are associated spaces isomorphic?
If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic \leadsto Noncommutative geometry

Questions

1. For which arithmetic data are associated spaces isomorphic?
2. If they are isomorphic, what are the isomorphisms?
Theme Revisited

If V is not simple, study

$$\{\sigma, \tau\} \leadsto \mathbb{P}^{n.c.}(L_\sigma \oplus L_\tau)$$

If V is simple, study

$$\lambda \leadsto \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic \leadsto Noncommutative geometry

Questions

1. For which arithmetic data are associated spaces isomorphic?
2. If they are isomorphic, what are the isomorphisms?
3. What is the relationship between the arithmetic data and the automorphism groups?
Part 3

Noncommutative Symmetric Algebras
Suppose

- V has rank two.
- $\{x, y\}$ is *simultaneous* basis for V.
Suppose

- V has rank two.
- $\{x, y\}$ is simultaneous basis for V.

Construct n.c. ring $S^{n.c.}(V)$ which specializes to

$$S(V) := \frac{L \oplus V \oplus V \otimes 2 \oplus \cdots}{(x \otimes y - y \otimes x)}$$

when V is L-central.
Suppose
- V has rank two.
- $\{x, y\}$ is simultaneous basis for V.

Construct n.c. ring $\mathcal{S}^{n.c.}(V)$ which specializes to

$$\mathcal{S}(V) := \frac{L \oplus V \oplus V^\otimes 2 \oplus \cdots}{(x \otimes y - y \otimes x)}$$

when V is L-central.

Should have expected left and right Hilbert series
Define

\[S^{n.c.}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y - y \otimes x)} \]
Define
\[S^{n.c.}(V) := \frac{L \oplus V \oplus V^\otimes 2 \oplus \cdots}{(x \otimes y - y \otimes x)} \]

Problem
Too many relations.
There exists canonical $\eta_0 : L \rightarrow V \otimes_L V^*$:
There exists canonical $\eta_0 : L \rightarrow V \otimes_L V^*$: If $\delta_x \in \text{Hom}_L(V_L, L)$ is dual to x etc. then
There exists canonical $\eta_0 : L \rightarrow V \otimes_L V^*$: If $\delta_x \in \text{Hom}_L(V_L, L)$ is dual to x etc. then

$$\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$$
There exists canonical $\eta_0 : L \to V \otimes_L V^*$: If $\delta_x \in \text{Hom}_L(V_L, L)$ is dual to x etc. then

$$\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$$

η_0 independent of choices.
There exists canonical $\eta_0 : L \to V \otimes_L V^*$: If $\delta_x \in \text{Hom}_L(V_L, L)$ is dual to x etc. then

$$\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$$

η_0 independent of choices. Define

$$S^{n.c.}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\text{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\text{im} \eta_0 \otimes V^{**} + V \otimes \text{im} \eta_1} \oplus \cdots$$
There exists canonical $\eta_0 : L \to V \otimes_L V^*$: If $\delta_x \in \text{Hom}_L(V_L, L)$ is dual to x etc. then

$$\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$$

η_0 independent of choices. Define

$$S^{n.c.}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\text{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\text{im} \eta_0 \otimes V^{**} + V \otimes \text{im} \eta_1} \oplus \cdots$$

Problem

No natural multiplication: if $x, y \in V$, $x \cdot y$ not in $\frac{V \otimes V^*}{\text{im} \eta_0}$.

Adam Nyman
Z-algebras (Bondal and Polishchuk (1993))
A ring A is a \mathbb{Z}-algebra if
\mathbb{Z}-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
A ring A is a \mathbb{Z}-algebra if

- \exists vector space decom $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$.
A ring A is a \mathbb{Z}-algebra if

- \exists vector space decom $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subseteq A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij} A_{jk} \subset A_{ik}$,
- $A_{ij} A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i.
A ring A is a \mathbb{Z}-algebra if

- \exists vector space decom $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i.

Remark: A does not have a unity and is not a domain.
A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A = \oplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij} A_{jk} \subset A_{ik}$,
- $A_{ij} A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i.

Remark: A does not have a unity and is not a domain.

Example

If $(\mathcal{O}(n))_{n \in \mathbb{Z}}$ is seq. of objects in a category A, then

$$A_{ij} = \text{Hom}_A(\mathcal{O}(-j), \mathcal{O}(-i))$$

with mult. = composition makes $\oplus_{i,j \in \mathbb{Z}} A_{ij}$ a \mathbb{Z}-algebra
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra
Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

\[S^{n.c.}(V)_{ij} = \frac{V^i \otimes_L \cdots \otimes_L V^{j-1} \ast}{\text{relns. gen. by } \eta_i} \text{ for } j > i, \]
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra

Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V_{i}^{*} \otimes L \cdots \otimes L V_{j-1}^{*}}{\text{relns. gen. by } \eta_{i}}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,

Adam Nyman
Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V_i^* \otimes_L \cdots \otimes_L V_{j-1}^*}{\text{relns. gen. by } \eta_i}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if $i > j$,

Adam Nyman
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra

Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V_i^* \otimes_L \cdots \otimes_L V_j^{1*}}{\text{relns. gen. by } \eta_i}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if $i > j$,
- multiplication induced by \otimes_L.

Adam Nyman
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra

Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V^i \otimes_L \ldots \otimes_L V^{j-1} \ast}{\text{rels. gen. by } \eta_i}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if $i > j$,
- multiplication induced by \otimes_L.

More generally, if
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra

Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V^i \otimes_L \cdots \otimes_L V^{j-1}^*}{\text{relns. gen. by } \eta_i}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if $i > j$,
- multiplication induced by \otimes_L.

More generally, if
- X is a smooth scheme of finite type over a k
Definition of $\mathbb{S}^{n.c.}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{n.c.}(V)_{ij} = \frac{V_i^* \otimes_L \cdots \otimes_L V_{j-1}^*}{\text{relns. gen. by } \eta_i}$ for $j > i$,
- $\mathbb{S}^{n.c.}(V)_{ii} = L$,
- $\mathbb{S}^{n.c.}(V)_{ij} = 0$ if $i > j$,
- multiplication induced by \otimes_L.

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank n \mathcal{O}_X-bimodule
Attempt 3: $S^{n.c.}(V)$ is a \mathbb{Z}-algebra

Definition of $S^{n.c.}(V)$ (Van den Bergh (2000))

- $S^{n.c.}(V)_{ij} = \frac{V_i^* \otimes_L \cdots \otimes_L V_{j-1}^*}{\text{relns. gen. by } \eta_i}$ for $j > i$,
- $S^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if $i > j$,
- multiplication induced by \otimes_L.

More generally, if

- X is a smooth scheme of finite type over a k
- E is a locally free rank n \mathcal{O}_X-bimodule

Van den Bergh defines $S^{n.c.}(E)$.
Relation to $S(V)$
If V is L-central, $S^{n.c.}(V) \neq S(V)$.

Adam Nyman
Relation to $\mathcal{S}(V)$

If V is L-central, $\mathcal{S}^{n.c.}(V) \neq \mathcal{S}(V)$.

If A is a \mathbb{Z}-algebra,
If V is L-central, $S_{\text{n.c.}}(V) \neq S(V)$.

If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
If V is L-central, $S^{n.c.}(V) \neq S(V)$.

If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is i-periodic if $A \cong A(i)$.

Adam Nyman
If V is L-central, $S^{n.c.}(V) \neq S(V)$.

If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{ij} := B_{j-i}$.
If V is L-central, $\mathcal{S}^{n.c.}(V) \neq \mathcal{S}(V)$.

If A is a \mathbb{Z}-algebra,
- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\tilde{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring \tilde{B} such that $A \cong \tilde{B}$.
If V is L-central, $S^{n.c.}(V) \neq S(V)$.

If A is a \mathbb{Z}-algebra,
- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\tilde{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))
If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \tilde{B}$, and $\text{Gr}A \equiv \text{Gr}B$.
If V is L-central, $S^{n.c.}(V) \neq S(V)$.

If A is a \mathbb{Z}-algebra,
- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\tilde{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \tilde{B}$, and $\text{Gr}A \equiv \text{Gr}B$. It follows that if V is L-central, then

$$\text{Gr}S^{n.c.}(V) \equiv \text{Gr}S(V).$$
Part 4

Arithmetic Noncommutative Projective Lines
Basic Properties

- V a rank 2 (k-central) two-sided vector space $/L$
Basic Properties

- V a rank 2 (k-central) two-sided vector space
- $\text{Tors}^{n.c.}(V)$ = full subcat. of $\text{Gr}^{n.c.}(V)$ of direct limits of right bounded modules
Basic Properties

- V a rank 2 (k-central) two-sided vector space $/L$
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V) / \text{Tors}^{n.c.}(V)$,
Basic Properties

- V a rank 2 (k-central) two-sided vector space / L
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of } \text{Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V)/\text{Tors}^{n.c.}(V)$

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$
V a rank 2 \((k\text{-central})\) two-sided vector space \(/L\)

\(\text{Tors}^{n.c.}(V) = \text{full subcat. of Gr}^{n.c.}(V)\) of direct limits of right bounded modules

\(\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V)/\text{Tors}^{n.c.}(V)\),

Theorem

The noncommutative space \(\mathbb{P}^{n.c.}(V)\)

- is a locally noetherian category (Van den Bergh (2000)),

Adam Nyman
Basic Properties

- V a rank 2 (k-central) two-sided vector space / L
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of } \text{Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V)/\text{Tors}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$
- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)).
Basic Properties

- V a rank 2 (k-central) two-sided vector space $/L$
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of } \text{Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V) / \text{Tors}^{n.c.}(V)$

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$
- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2] : \text{Gr}^{n.c.}(V) \to \text{Gr}^{n.c.}(V)$,
Basic Properties

- V a rank 2 (k-central) two-sided vector space $/L$
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of } \text{Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V)/\text{Tors}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$
- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2] : \text{Gr}^{n.c.}(V) \to \text{Gr}^{n.c.}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and
Basic Properties

- V a rank 2 (k-central) two-sided vector space $/L$
- $\text{Tors}^{n.c.}(V) = \text{full subcat. of Gr}^{n.c.}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \text{Gr}^{n.c.}(V)/\text{Tors}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2] : \text{Gr}^{n.c.}(V) \to \text{Gr}^{n.c.}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and
- has a tilting object \mathcal{T}.

Adam Nyman
Motivation: Birational Classification of Noncommutative Surfaces
Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.
Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If \(C, C' \) are \(\mathbb{Z} \)-graded,

\[
\text{Proj} \, C \text{ birational to } \text{Proj} \, C'
\]

\textbf{means} deg. 0 comp. of skew field of \(C \) equals that of \(C' \).
Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C' are \mathbb{Z}-graded,

\[
\text{Proj} C \text{ birational to Proj} C'
\]

means $\text{deg. } 0 \text{ comp. of skew field of } C \text{ equals that of } C'$.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over L
Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C' are \mathbb{Z}-graded,

$$\text{Proj} C \text{ birational to } \text{Proj} C'$$

means deg. 0 comp. of skew field of C equals that of C'.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over $L = \text{function field of smooth curve}$
Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C' are \mathbb{Z}-graded,

$$\text{Proj} C \text{ birational to } \text{Proj} C'$$

means deg. 0 comp. of skew field of C equals that of C'.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over $L =$ function field of smooth curve

Birational invariants of noncommutative projective lines $\mathbb{P}^{n.c.}(V)$ may suggest birational invariants of a noncommutative surface.
“The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search.” –F. Calogero
“The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search.” – F. Calogero

Thanks Thomas Nevins.
$\mathbb{P}^{n.c.}(V)$ is Integral
$P^{n.c.}(V)$ is Integral

Let X = locally noetherian noncommutative space.
Let $X = \text{locally noetherian noncommutative space.}$

Definition (S.P. Smith (2001))
Let $X = \text{locally noetherian noncommutative space}$.

Definition (S.P. Smith (2001))

X is **integral** if \exists indecomposable injective \mathcal{E}_X (a **big injective**) such that
Let $X =$ locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is **integral** if \exists indecomposable injective \mathcal{E}_X (a **big injective**) such that

1. $\operatorname{End}_X(\mathcal{E}_X)$ is a division ring and
Let $X =$ locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is **integral** if \exists indecomposable injective E_X (a **big injective**) such that

1. $\text{End}_X(E_X)$ is a division ring and
2. every object of X is a subquotient of $\bigoplus E_X$.
Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is **integral** if \exists indecomposable injective E_X (a **big injective**) such that

1. $\text{End}_X(E_X)$ is a division ring and
2. every object of X is a subquotient of $\bigoplus E_X$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and $E_{\mathcal{Qcoh}Y}$ is the constant sheaf with sections $= k(Y)$.
$\mathbb{P}^{n.c.}(V)$ is Integral

Let $X = \text{locally noetherian noncommutative space}.$

Definition (S.P. Smith (2001))

X is *integral* if \exists indecomposable injective \mathcal{E}_X (a *big injective*) such that

1. $\text{End}_X(\mathcal{E}_X)$ is a division ring and
2. every object of X is a subquotient of $\bigoplus \mathcal{E}_X$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and $\mathcal{E}_{\text{Qcoh}Y}$ is the constant sheaf with sections $= k(Y)$.

Theorem (N. 2013)

The noncommutative space $\mathbb{P}^{n.c.}(V)$ is integral.
$M \in X$ is **torsion** if $\text{Hom}_X (M, \mathcal{E}_X) = 0$.
$M \in X$ is **torsion** if $\text{Hom}_X(M, \mathcal{E}_X) = 0$.

rank $M :=$ length of $\text{Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$-module.
Classification of Vector Bundles

- $M \in X$ is **torsion** if $\text{Hom}_X(M, \mathcal{E}_X) = 0$.
- $\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X) \text{ as left } \text{End}_X(\mathcal{E}_X)\text{-module.}$

Definition

Vector bundles $/ X =$
$M \in X$ is **torsion** if $\text{Hom}_X(M, E_X) = 0$.

- $\text{rank } M := \text{length of } \text{Hom}_X(M, E_X) \text{ as left } \text{End}_X(E_X)-\text{module.}$
Classification of Vector Bundles

- $M \in X$ is torsion if $\text{Hom}_X(M, E_X) = 0$.
- rank $M :=$ length of $\text{Hom}_X(M, E_X)$ as left $\text{End}_X(E_X)$-module.

Definition

Vector bundles $/X = $ finite rank torsion-free modules.

- Let $e_i S^{n,c}(V) := \bigoplus_{j \in \mathbb{Z}} S^{n,c}(V)_{ij} \in \text{Gr} S^{n,c}(V)$.

Adam Nyman
Classification of Vector Bundles

- \(M \in X \) is **torsion** if \(\text{Hom}_X(M, \mathcal{E}_X) = 0 \).
- \(\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X) \) as left \(\text{End}_X(\mathcal{E}_X) \)-module.

Definition

Vector bundles \(/X = \) finite rank torsion-free modules.

- Let \(e_i^{S_n.\cdot}(V) := \bigoplus_{j \in \mathbb{Z}} S_j^{n.\cdot}(V)_{ij} \in \text{Gr} S^{n.\cdot}(V) \).
- Let \(\pi : \text{Gr} S^{n.\cdot}(V) \to P^{n.\cdot}(V) \) be the quotient functor.
Classification of Vector Bundles

- $M \in X$ is **torsion** if $\text{Hom}_X(M, \mathcal{E}_X) = 0$.
- $\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X) \text{ as left } \text{End}_X(\mathcal{E}_X)-\text{module}$.

Definition

Vector bundles $/X = \text{finite rank torsion-free modules}$.

- Let $e_i^{S^n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} S^{n.c.}(V)_{ij} \in \text{Gr} S^{n.c.}(V)$.
- Let $\pi : \text{Gr} S^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$ be the quotient functor.
- Let $\mathcal{O}(i) :=$
\[M \in X \text{ is torsion if } \text{Hom}_X(M, \mathcal{E}_X) = 0. \]

\[\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X) \text{ as left } \text{End}_X(\mathcal{E}_X)\text{-module}. \]

Definition

Vector bundles \(/X = \) finite rank torsion-free modules.

- Let \(e_i S^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} S^{n.c.}(V)_{ij} \in \text{Gr} S^{n.c.}(V). \)
- Let \(\pi : \text{Gr} S^{n.c.}(V) \to \mathbb{P}^{n.c.}(V) \) be the quotient functor.
- Let \(\mathcal{O}(i) := \pi(e_{-i} S^{n.c.}(V)). \)
Classification of Vector Bundles

- $M \in X$ is **torsion** if $\text{Hom}_X(M, \mathcal{E}_X) = 0$.
- $\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$-module.

Definition

Vector bundles $/X = \text{finite rank torsion-free modules}$.

- Let $e_i S^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} S^{n.c.}(V)_{ij} \in \text{Gr} S^{n.c.}(V)$.
- Let $\pi : \text{Gr} S^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(V)$ be the quotient functor.
- Let $\mathcal{O}(i) := \pi(e_{-i} S^{n.c.}(V))$.

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{n.c.}(V)$ is a direct sum of line bundles.
Classification of Vector Bundles

- $M \in X$ is **torsion** if $\text{Hom}_X(M, \mathcal{E}_X) = 0$.
- $\text{rank } M := \text{length of } \text{Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$-module.

Definition

Vector bundles $/X = \text{finite rank torsion-free modules}$.

- Let $e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \text{Gr} \mathbb{S}^{n.c.}(V)$.
- Let $\pi : \text{Gr} \mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$ be the quotient functor.
- Let $O(i) := \pi(e_{-i} \mathbb{S}^{n.c.}(V))$.

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{n.c.}(V)$ is a direct sum of line bundles. The line bundles are $\{O(i)\}_{i \in \mathbb{Z}}$.

Adam Nyman
Part 5

Classification of Noncommutative Projective Lines
Classification Theorem Version 1

Theorem (N. (2013))

\[\mathbb{P}^{n.c.} (V) \equiv_k \mathbb{P}^{n.c.} (W) \] if and only if
Theorem (N. (2013))

\[\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W) \text{ if and only if there exists } \sigma, \tau \in \text{Gal}(L/k) \text{ such that either} \]

\[V \cong L_\sigma \otimes_L W \otimes_L L_\tau \]
Theorem (N. (2013))

\[\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W) \text{ if and only if there exists } \sigma, \tau \in \text{Gal}(L/k) \text{ such that either} \]

\[V \cong L_\sigma \otimes_L W \otimes_L L_\tau \text{ or } V \cong L_\sigma \otimes_L W^* \otimes_L L_\tau. \]
Theorem (N. (2013))

\[\mathbb{P}^{n.c.}(V) \cong_k \mathbb{P}^{n.c.}(W) \] if and only if there exists \(\sigma, \tau \in \text{Gal}(L/k) \) such that either

\[V \cong L_\sigma \otimes_L W \otimes_L L_\tau \] or \[V \cong L_\sigma \otimes_L W^* \otimes_L L_\tau. \]

(\(\Leftarrow \)) proven in greater generality by I. Mori.
Theorem (N. (2013))

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if
Theorem (N. (2013))

Suppose char \(k \neq 2 \). Then \(\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2) \) if and only if

Case 1: \(\exists \sigma_i \in \text{Gal}(L/k) \) such that

\[
V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.
\]
Suppose $\text{char } k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if

Case 1: $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \text{Qcoh}\mathbb{P}^1$.

Adam Nyman
Suppose \(\text{char } k \neq 2 \). Then \(\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2) \) if and only if

Case 1: \(\exists \sigma_i \in \text{Gal}(L/k) \) such that

\[
V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.
\]

In this case, \(\mathbb{P}^{n.c.}(V_i) \equiv \text{Qcoh}\mathbb{P}^1 \).

Case 2: \(\exists \sigma_i, \tau_i \in \text{Gal}(L/k) \), with \(\sigma_i \neq \tau_i \),

\[
V_i \cong L_{\sigma_i} \oplus L_{\tau_i}.
\]
Theorem (N. (2013))

Suppose $\text{char } k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if

Case 1: $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \text{Qcoh}\mathbb{P}^1$.

Case 2: $\exists \sigma_i, \tau_i \in \text{Gal}(L/k)$, with $\sigma_i \neq \tau_i$,

$$V_i \cong L_{\sigma_i} \oplus L_{\tau_i}$$

and under action of $\text{Gal}(L/k)^2$ on itself defined by

$$(\alpha, \beta) \cdot (\sigma, \tau) := (\alpha \sigma \beta^{-1}, \alpha \tau \beta^{-1})$$
Suppose $\text{char } k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if

Case 1: $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \text{Qcoh}\mathbb{P}^1$.

Case 2: $\exists \sigma_i, \tau_i \in \text{Gal}(L/k)$, with $\sigma_i \neq \tau_i$,

$$V_i \cong L_{\sigma_i} \oplus L_{\tau_i}$$

and under action of $\text{Gal}(L/k)^2$ on itself defined by

$$(\alpha, \beta) \cdot (\sigma, \tau) := (\alpha \sigma \beta^{-1}, \alpha \tau \beta^{-1})$$

$\mathcal{O}_{(\sigma_1, \tau_1)} \cap \{(\sigma_2, \tau_2), (\sigma_2^{-1}, \tau_2^{-1}), (\tau_2, \sigma_2), (\tau_2^{-1}, \sigma_2^{-1})\} \neq \emptyset.$
Theorem (cont.)

Let $G := \text{Gal}(\overline{L}/L)$. Suppose $\text{char } k \neq 2$. Then

$\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if

Case 3: $\exists \lambda_i \in \text{Emb}(L)$ of G-orbit size two, such that

$$V_i \cong V(\lambda_i),$$
Theorem (cont.)

Let $G := \text{Gal}(\overline{L}/L)$. Suppose $\text{char } k \neq 2$. Then $P^{n.c.}(V_1) \equiv P^{n.c.}(V_2)$ if and only if

Case 3: $\exists \lambda_i \in \text{Emb}(L)$ of G-orbit size two, such that

$$V_i \cong V(\lambda_i),$$

and under the action of $\text{Gal}(L/k)^2$ on $\text{Emb}(L)$ defined by

$$(\alpha, \beta) \cdot \lambda := \alpha \lambda \beta^{-1},$$

Either
Classification Theorem Version 2, Case 3

Theorem (cont.)

Let \(G := \text{Gal}(\overline{L}/L) \). Suppose \(\text{char } k \neq 2 \). Then
\[
\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)
\]
if and only if

Case 3: \(\exists \, \lambda_i \in \text{Emb}(L) \) of \(G \)-orbit size two, such that

\[
V_i \cong V(\lambda_i),
\]

and under the action of \(\text{Gal}(L/k)^2 \) on \(\text{Emb}(L) \) defined by

\[
(\alpha, \beta) \cdot \lambda := \alpha \lambda \beta^{-1},
\]

Either

- \(O_{\lambda_1} \cap \lambda_2^G \neq \emptyset \) or
Theorem (cont.)

Let \(G := \text{Gal}(\overline{L}/L) \). Suppose \(\text{char } k \neq 2 \). Then
\[
\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)
\]
if and only if

Case 3: \(\exists \lambda_i \in \text{Emb}(L) \) of \(G \)-orbit size two, such that
\[
V_i \cong V(\lambda_i),
\]
and under the action of \(\text{Gal}(L/k)^2 \) on \(\text{Emb}(L) \) defined by
\[
(\alpha, \beta) \cdot \lambda := \alpha \lambda \beta^{-1},
\]
Either
- \(\mathcal{O}_{\lambda_1} \cap \lambda_2^G \neq \emptyset \) or
- \(\mathcal{O}_{\lambda_1} \cap \mu_2^G \neq \emptyset \) where \(\mu_2 = (\lambda_2)^{-1}|_L \).
Part 6

Classification of Isomorphisms $\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(W)$
$\phi : V \xrightarrow{\sim} W$ induces $\phi : S^{n.c.}(V) \xrightarrow{\sim} S^{n.c.}(W)$.
\(\phi : V \xrightarrow{\sim} W \) induces \(\phi : S^{n.c.}(V) \xrightarrow{\sim} S^{n.c.}(W) \).

The equivalence \(\Phi \)
\[\phi : V \xrightarrow{\sim} W \text{ induces } \phi : \mathbb{S}^{n.c.}(V) \xrightarrow{\sim} \mathbb{S}^{n.c.}(W). \]

The equivalence \(\Phi \)

Definition of \(\Phi : \text{Gr}\mathbb{S}^{n.c.}(V) \rightarrow \text{Gr}\mathbb{S}^{n.c.}(W) : \)
Canonical Equivalences 1

$\phi : V \overset{\sim}{\rightarrow} W$ induces $\phi : S^{n.c.}(V) \overset{\sim}{\rightarrow} S^{n.c.}(W)$.

The equivalence Φ

Definition of $\Phi : GrS^{n.c.}(V) \rightarrow GrS^{n.c.}(W)$:

- $\Phi(M)_i := M_i$ as a set, with $S^{n.c.}(W)$-module structure

$$
\Phi(M)_i \otimes S^{n.c.}(W)_{ij} \overset{1 \otimes \phi^{-1}}{\rightarrow} \Phi(M)_i \otimes S^{n.c.}(V)_{ij} \overset{\mu}{\rightarrow} \Phi(M)_j.
$$
φ : V \rightarrow W induces \phi : S^{n.c.}(V) \rightarrow S^{n.c.}(W).

The equivalence \Phi

Definition of \Phi : GrS^{n.c.}(V) \rightarrow GrS^{n.c.}(W):

- \Phi(M)_i := M_i as a set, with S^{n.c.}(W)-module structure

\[
\Phi(M)_i \otimes S^{n.c.}(W)_{ij} \overset{1 \otimes \phi^{-1}}{\longrightarrow} \Phi(M)_i \otimes S^{n.c.}(V)_{ij} \overset{\mu}{\longrightarrow} \Phi(M)_j.
\]

- If \(f : M \rightarrow N \) we define \(\Phi(f)_i(m) = f(m) \).
$\phi : V \xrightarrow{\sim} W$ induces $\phi : S^{n.c.}(V) \xrightarrow{\sim} S^{n.c.}(W)$.

The equivalence Φ

Definition of $\Phi : \text{Gr}S^{n.c.}(V) \rightarrow \text{Gr}S^{n.c.}(W)$:

- $\Phi(M)_i := M_i$ as a set, with $S^{n.c.}(W)$-module structure

\[
\Phi(M)_i \otimes S^{n.c.}(W)_{ij} \xrightarrow{1 \otimes \phi^{-1}} \Phi(M)_i \otimes S^{n.c.}(V)_{ij} \xrightarrow{\mu} \Phi(M)_j.
\]

- If $f : M \rightarrow N$ we define $\Phi(f)_i(m) = f(m)$.

Φ descends uniquely to an equivalence $\Phi : \mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(W)$.

Adam Nyman
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and

If A denotes a \mathbb{Z}-algebra, let A_σ denote the \mathbb{Z}-algebra with

$$A_{\sigma,ij} := L_{\sigma_i^{-1}} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and

If A denotes a \mathbb{Z}-algebra, let A_σ denote the \mathbb{Z}-algebra with

$$A_{\sigma,ij} := L_{\sigma_i}^{-1} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_σ (Van den Bergh)

Definition of $T_\sigma : \text{Gr}A \rightarrow \text{Gr}A_\sigma$:
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and

If A denotes a \mathbb{Z}-algebra, let A_σ denote the \mathbb{Z}-algebra with

$$A_{\sigma,ij} := L_{\sigma_i}^{-1} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_σ (Van den Bergh)

Definition of $T_\sigma : \text{Gr} A \rightarrow \text{Gr} A_\sigma$:

$T_\sigma(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and

If A denotes a \mathbb{Z}-algebra, let A_σ denote the \mathbb{Z}-algebra with

$$A_{\sigma,ij} := L_{\sigma_i}^{-1} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_σ (Van den Bergh)

Definition of $T_\sigma : \text{Gr}A \rightarrow \text{Gr}A_\sigma$:

- $T_\sigma(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and
- If $f : M \rightarrow N$ we define $T_\sigma(f)_i = f_i \otimes L_{\sigma_i}$.
For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

Let $\sigma := \{\sigma_i\}_{i \in \mathbb{Z}}$, and

If A denotes a \mathbb{Z}-algebra, let A_σ denote the \mathbb{Z}-algebra with

$$A_{\sigma,ij} := L_{\sigma_i}^{-1} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_σ (Van den Bergh)

Definition of $T_\sigma : \text{Gr}A \to \text{Gr}A_\sigma$:

- $T_\sigma(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and
- If $f : M \to N$ we define $T_\sigma(f)_i = f_i \otimes L_{\sigma_i}$.

T_σ descends uniquely to an equivalence $T_\sigma : \text{Proj}A \to \text{Proj}A_\sigma$.

Adam Nyman
A Special Twist

Adam Nyman
A Special Twist

For $\delta, \tau \in \text{Gal}(L/k)$

$$\zeta_i = \begin{cases}
\delta & \text{if } i \text{ is even} \\
\tau & \text{if } i \text{ is odd},
\end{cases}$$
For $\delta, \tau \in \text{Gal}(L/k)$

$$\zeta_i = \begin{cases}
\delta & \text{if } i \text{ is even} \\
\tau & \text{if } i \text{ is odd},
\end{cases}$$

In this case there is a canonical isomorphism

$$\mathcal{S}^{n.c.}(V)_{\zeta} \rightarrow \mathcal{S}^{n.c.}(L_{\delta^{-1}} \otimes V \otimes L_{\tau}).$$
A Special Twist

For $\delta, \tau \in \text{Gal}(L/k)$

$$\zeta_i = \begin{cases}
\delta & \text{if } i \text{ is even} \\
\tau & \text{if } i \text{ is odd},
\end{cases}$$

In this case there is a canonical isomorphism

$$\mathcal{S}^{n.c.}(V)_{\zeta} \rightarrow \mathcal{S}^{n.c.}(L_{\delta^{-1}} \otimes V \otimes L_{\tau}).$$

Notation

$$T_{\delta, \tau} : \mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(L_{\delta^{-1}} \otimes V \otimes L_{\tau})$$
Shift Functor

Definition of $[i] : \text{Gr}^{n.c.}(V) \to \text{Gr}^{n.c.}(V) \ (i \in \mathbb{Z})$:

- $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M
- If $f : M \to N$, $f[i]_j = f_{j+i}$.

Adam Nyman
Shift Functor

Definition of \([i] : \text{Gr}\mathbb{S}^{n.c.}(V) \rightarrow \text{Gr}\mathbb{S}^{n.c.}(V) (i \in \mathbb{Z})\):

- \(M[i]_j := M_{j+i}\) with multiplication induced from mult. on \(M\)
- If \(f : M \rightarrow N\), \(f[i]_j = f_{j+i}\).

Problem

If \(i\) is odd, \(M[i]\) does not inherit \(\mathbb{S}^{n.c.}(V)\)-module mult. from \(M\)!
Shift Functor

Definition of $[i]: \text{Gr}S^{n.c.}(V) \to \text{Gr}S^{n.c.}(V) \ (i \in \mathbb{Z})$:

- $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M
- If $f : M \to N$, $f[i]_j = f_{j+i}$.

Problem

If i is odd, $M[i]$ does not inherit $S^{n.c.}(V)$-module mult. from M!
But $M[i]$ does have a $S^{n.c.}(V^*)$-module structure (I. Mori)
Shift Functor

Definition of \([i] : \text{Gr}\mathbb{S}^{n.c.}(V) \rightarrow \text{Gr}\mathbb{S}^{n.c.}(V) \ (i \in \mathbb{Z})\):

- \(M[i]_j \coloneqq M_{j+i}\) with multiplication induced from mult. on \(M\)
- If \(f : M \rightarrow N\), \(f[i]_j = f_{j+i}\).

Problem

If \(i\) is odd, \(M[i]\) does not inherit \(\mathbb{S}^{n.c.}(V)\)-module mult. from \(M\)!
But \(M[i]\) does have a \(\mathbb{S}^{n.c.}(V^*)\)-module structure (I. Mori)

\[
[i] : \mathbb{P}^{n.c.}(V) \rightarrow \begin{cases}
\mathbb{P}^{n.c.}(V) & \text{if } i \text{ is even} \\
\mathbb{P}^{n.c.}(V^*) & \text{if } i \text{ is odd}
\end{cases}
\]
Classification of Isomorphisms
Classification of Isomorphisms

Theorem (N. (2013))

If $F : \mathbb{P}^{n,c}(V) \to \mathbb{P}^{n,c}(W)$ is k-linear equivalence, there exists
Theorem (N. (2013))

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
Classification of Isomorphisms

Theorem (N. (2013))

If $F : \mathbb{P}^{n,c} (V) \rightarrow \mathbb{P}^{n,c} (W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \text{Gal} (L/k)$, and
Theorem (N. (2013))

If $F : \mathbb{P}^n.c.(V) \to \mathbb{P}^n.c.(W)$ is k-linear equivalence, there exists
- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \text{Gal}(L/k)$, and
- an isomorphism $\phi : L_{\sigma^{-1}} \otimes_L V \otimes L L_{\tau} \to W^{-i^*}$
Theorem (N. (2013))

If $F : \mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \text{Gal } (L/k)$, and
- an isomorphism $\phi : L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \rightarrow W^{-i^*}$

such that

$$F \cong [i] \circ \Phi \circ T_{\sigma, \tau}.$$
Theorem (N. (2013))

If \(F : \mathbb{P}^{n,c}(V) \to \mathbb{P}^{n,c}(W) \) is \(k \)-linear equivalence, there exists

- \(i \in \mathbb{Z} \),
- \(\sigma, \tau \in \text{Gal}(L/k) \), and
- an isomorphism \(\phi : L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i*} \)

such that

\[
F \cong [i] \circ \Phi \circ T_{\sigma,\tau}.
\]

Furthermore,

- \(i, \sigma \) and \(\tau \) are unique up to natural equivalence and
Theorem (N. (2013))

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \text{Gal}(L/k)$, and
- an isomorphism $\phi : L_{\sigma^{-1}} \otimes_L V \otimes_L L_\tau \to W^{-i^*}$

such that

$$F \cong [i] \circ \Phi \circ T_{\sigma, \tau}.$$

Furthermore,

- i, σ and τ are unique up to natural equivalence and
- $\Phi \equiv \Phi' \iff$ there exist $\alpha, \beta \in L^*$ such that
 $$\phi' \circ \phi^{-1}(w) = \alpha \cdot w \cdot \beta \text{ for all } w \in W^{-i^*}$$
Classification of Isomorphisms

Theorem (N. (2013))

If $F : \mathbb{P}^{n,c}(V) \to \mathbb{P}^{n,c}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \text{Gal}(L/k)$, and
- an isomorphism $\phi : L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

such that

$$F \cong [i] \circ \Phi \circ T_{\sigma,\tau}.$$

Furthermore,

- i, σ and τ are unique up to natural equivalence and
- $\Phi \equiv \Phi' \iff$ there exist $\alpha, \beta \in L^*$ such that
 $$\phi' \circ \phi^{-1}(w) = \alpha \cdot w \cdot \beta \text{ for all } w \in W^{-i^*}$$
Part 7

Automorphism Groups
Aut $\mathbb{P}^{n.c.}(V)$, Stab V and Aut V
The group $\text{Aut } \mathbb{P}^{n.c.}(V)$

$\text{Aut } \mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.
The group $\text{Aut } \mathbb{P}^{n.c.}(V)$

$\text{Aut } \mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

$\text{Stab } V =$ subgroup of $\text{Gal } (L/k) \times \text{Gal } (L/k)$ consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$
The group $\text{Aut } \mathbb{P}^{n.c.}(V)$

$\text{Aut } \mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of $\text{Stab } V$

$\text{Stab } V = \text{subgroup of } \text{Gal } (L/k) \times \text{Gal } (L/k) \text{ consisting of } (\sigma, \tau) \text{ such that } L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$

Definition of $\text{Aut } V$

$\text{Aut } V = \text{the set of isomorphisms } V \rightarrow V$
The group $\text{Aut } \mathbb{P}^{n.c.}(V)$

$\text{Aut } \mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

$\text{Stab } V =$ subgroup of $\text{Gal } (L/k) \times \text{Gal } (L/k)$ consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$

Definition of Aut V

$\text{Aut } V =$ the set of isomorphisms $V \rightarrow V$ modulo the relation defined by setting $\phi' \equiv \phi \Leftrightarrow$ there exist $\alpha, \beta \in L^*$ such that $\phi' \circ \phi^{-1}(v) = \alpha \cdot v \cdot \beta$ for all $v \in V$.

Adam Nyman
The Automorphism Group

Theorem (N. (2013))

There exists homomorphism $\psi : \text{Stab } V \rightarrow \text{End } (\text{Aut } (V))$ such that
The Automorphism Group

Theorem (N. (2013))

There exists homomorphism $\psi : \operatorname{Stab} V \rightarrow \operatorname{End} (\operatorname{Aut} (V))$ such that

$$\operatorname{Aut} \mathbb{P}^{n.c.}(V) \cong \operatorname{Aut} V \rtimes_\psi \operatorname{Stab} V^{op}.$$
Let $V = L_{\sigma} \oplus L_{\sigma}$. Then
Let $V = L_\sigma \oplus L_\sigma$. Then
- $\text{Stab } V \cong \text{Gal } (L/k)$ and
Let $V = L_\sigma \oplus L_\sigma$. Then

- $\text{Stab } V \cong \text{Gal } (L/k)$ and
- $\text{Aut } V \cong \text{PGL}_2(L)$.
Let $V = L_\sigma \oplus L_\sigma$. Then

- $\text{Stab } V \cong \text{Gal } (L/k)$ and
- $\text{Aut } V \cong \text{PGL}_2(L)$.

Then $\psi : \text{Stab } V \rightarrow \text{End } (\text{Aut } (V))$ is the homomorphism
Let $V = L_\sigma \oplus L_\sigma$. Then

- $\text{Stab } V \cong \text{Gal } (L/k)$ and
- $\text{Aut } V \cong \text{PGL}_2(L)$.

Then $\psi : \text{Stab } V \to \text{End } (\text{Aut } (V))$ is the homomorphism

$$\psi : \text{Gal } (L/k) \to \text{End } (\text{PGL}_2(L))$$
Let \(V = L_\sigma \oplus L_\sigma \). Then
- \(\text{Stab } V \cong \text{Gal } (L/k) \) and
- \(\text{Aut } V \cong \text{PGL}_2(L) \).

Then \(\psi : \text{Stab } V \to \text{End } (\text{Aut } (V)) \) is the homomorphism

\[
\psi : \text{Gal } (L/k) \to \text{End } (\text{PGL}_2(L))
\]

defined by

\[
\psi(\sigma)[(a_{ij})] = [(\sigma(a_{ij}))]
\]
Let $V = L_\sigma \oplus L_\tau$ with $\sigma \neq \tau$.
Let $V = L_\sigma \oplus L_\tau$ with $\sigma \neq \tau$. Then

- $\text{Stab } V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and
Let $V = L_\sigma \oplus L_\tau$ with $\sigma \neq \tau$. Then

- $\text{Stab } V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and

There are two types of elements in $\text{Stab } V$.
Let \(V = L_\sigma \oplus L_\tau \) with \(\sigma \neq \tau \). Then

\[
\text{Stab } V = \{(g, h)|\{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\} \quad \text{and}
\]

There are two types of elements in \(\text{Stab } V \).

\[
\text{Aut } V \cong L^* \times L^*/\{(\alpha\sigma(\beta), \alpha\tau(\beta))|\alpha, \beta \in L^*\}
\]
Let $V = L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

$\text{Stab } V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and

There are two types of elements in $\text{Stab } V$.

$\text{Aut } V \cong L^* \times L^* / \{(\alpha\sigma(\beta), \alpha\tau(\beta)) | \alpha, \beta \in L^*\}$

Then $\psi : \text{Stab } V \rightarrow \text{End (Aut (V))}$ is defined by

$$\psi((g, h))[(a, b)] = [(g(a), g(b))]$$

if $g^{-1}\sigma h = \sigma$.
Let $V = L_\sigma \oplus L_\tau$ with $\sigma \neq \tau$. Then

- $\text{Stab } V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and

There are two types of elements in $\text{Stab } V$.

- $\text{Aut } V \cong L^* \times L^*/\{(\alpha\sigma(\beta), \alpha\tau(\beta)) | \alpha, \beta \in L^*\}$

Then $\psi : \text{Stab } V \to \text{End } (\text{Aut } (V))$ is defined by

$$\psi((g, h))[a, b] = [(g(a), g(b))]$$

if $g^{-1}\sigma h = \sigma$ and

$$\psi((g, h))[a, b] = [(g(b), g(a))]$$

if $g^{-1}\sigma h = \tau$ and
Let $V = L_\sigma \oplus L_\tau$ with $\sigma \neq \tau$. Then

- $\text{Stab } V = \{(g, h)|\{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and

There are two types of elements in $\text{Stab } V$.

- $\text{Aut } V \cong L^* \times L^*/\{(\alpha\sigma(\beta), \alpha\tau(\beta))|\alpha, \beta \in L^*\}$

Then $\psi: \text{Stab } V \rightarrow \text{End } (\text{Aut } (V))$ is defined by

$$\psi((g, h))[\,(a, b)\,] = [(g(a), g(b))],$$

if $g^{-1}\sigma h = \sigma$ and

$$\psi((g, h))[\,(a, b)\,] = [(g(b), g(a))],$$

if $g^{-1}\sigma h = \tau$ and

In the special case that V is not simple and $\text{Gal}(L/k)$ is cyclic the result was obtained by Kussin.
Let $V = V(\lambda) = 1L \vee \lambda(L)_\lambda$.
Let $V = V(\lambda) = \lambda L \vee \lambda(L)\lambda$. Then

$$\text{Stab } V = \{(g, h) \in \text{Gal } (L/k) \times \text{Gal } (L/k) | (g^{-1}\lambda h)^G = \lambda^G\}$$

and
Let $V = V(\lambda) = 1L \vee \lambda(L)\lambda$. Then

- $\text{Stab } V = \{(g, h) \in \text{Gal } (L/k) \times \text{Gal } (L/k) | (g^{-1} \lambda h)^G = \lambda^G\}$

and

- $\text{Aut } V = (L \vee \lambda(L))^*/L^*\lambda(L)^*$
Let $V = V(\lambda) = 1L \triangledown \lambda(L)_\lambda$. Then

- $\text{Stab } V = \{(g, h) \in \text{Gal } (L/k) \times \text{Gal } (L/k)| (g^{-1}\lambda h)^G = \lambda^G\}$

and

- $\text{Aut } V = (L \triangledown \lambda(L))^*/L^*\lambda(L)^*$

Lemma

For each $(g, h) \in \text{Stab } V$, $\exists!$ field automorphism $\psi_{g,h} : L \triangledown \lambda(L) \rightarrow L \triangledown \lambda(L)$
Let $V = V(\lambda) = 1L \lor \lambda(L)^L$. Then

- Stab $V = \{(g, h) \in \text{Gal}(L/k) \times \text{Gal}(L/k) | (g^{-1} \lambda h)^G = \lambda^G\}$
 and
- $\text{Aut } V = (L \lor \lambda(L))^*/L^* \lambda(L)^*$

Lemma

For each $(g, h) \in \text{Stab } V$, $\exists!$ field automorphism $\psi_{g,h} : L \lor \lambda(L) \rightarrow L \lor \lambda(L)$ such that if $a \in L$ then $\psi_{g,h}(a) = g(a)$, and $\psi_{g,h}(\lambda(a)) = \lambda(h(a))$.
Let $V = V(\lambda) = \lambda^1 L \vee \lambda(L)_\lambda$. Then

- $\text{Stab } V = \{(g, h) \in \text{Gal } (L/k) \times \text{Gal } (L/k)|(g^{-1}\lambda h)^G = \lambda^G\}$

and

- $\text{Aut } V = (L \vee \lambda(L))^*/L^* \lambda(L)^*$

Lemma

For each $(g, h) \in \text{Stab } V$, $\exists!$ field automorphism $\psi_{g,h} : L \vee \lambda(L) \to L \vee \lambda(L)$ such that if $a \in L$ then $\psi_{g,h}(a) = g(a)$, and $\psi_{g,h}(\lambda(a)) = \lambda(h(a))$.

Then $\psi : \text{Stab } V \to \text{End } (\text{Aut } (V))$ is the homomorphism defined by

$$\psi((g, h))[x] = [\psi_{g,h}(x)].$$
$\mathbb{P}^{n.c.}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{n.c.}(V(\lambda))$ as a function of λ.

1
1. $\mathbb{P}^{n.c.}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{n.c.}(V(\lambda))$ as a function of λ.

2. Classify the spaces $\mathbb{P}^{n.c.}(V)$ up to derived equivalence.
1. $\mathbb{P}^{n.c.}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{n.c.}(V(\lambda))$ as a function of λ.

2. Classify the spaces $\mathbb{P}^{n.c.}(V)$ up to derived equivalence.

Conjecture

$$D^b(\mathbb{P}^{n.c.}(V)) \cong D^b(\mathbb{P}^{n.c.}(W)) \Rightarrow \mathbb{P}^{n.c.}(V) \cong \mathbb{P}^{n.c.}(W)$$
1. \(\mathbb{P}^{n.c.}(V) \) is finite over its center (Kussin). No explicit description of center is known. Compute the center of \(\mathbb{P}^{n.c.}(V(\lambda)) \) as a function of \(\lambda \).

2. Classify the spaces \(\mathbb{P}^{n.c.}(V) \) up to derived equivalence.

Conjecture

\[
D^b(\mathbb{P}^{n.c.}(V)) \equiv D^b(\mathbb{P}^{n.c.}(W)) \Rightarrow \mathbb{P}^{n.c.}(V) \equiv \mathbb{P}^{n.c.}(W)
\]

and derived equivalences are induced by translations and equivalences

\[
\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(W).
\]
Thank you for your attention!