Maps to Noncommutative \mathbb{P}^1 (w/ Daniel Chan)

Adam Nyman

Western Washington University

September 14, 2019
Conventions

- always work over a field k
- always work with right modules
Part 1

Noncommutative Curves (a very brief overview)
Noncommutative Space := Grothendieck Category =
- (k-linear) abelian category with
- exact direct limits and
- a generator.

The following are non-commutative spaces:
- Mod R, R a ring
- Qcoh X, X a scheme
- Proj $A := \text{Gr}A/\text{Tors}A$ where A is \mathbb{Z}-graded

If A is noetherian, proj$A :=$ noetherian objects in Proj A, and Proj A is determined by projA.

Adam Nyman
The Artin-Stafford Theorem

Theorem (Artin-Stafford (1995))

Let $k = \overline{k}$. If A is connected GK-dimension 2 generated in degree 1, then there exists a projective curve Y such that $\text{proj} A \equiv \text{coh} Y$.

Slogan

Every noncommutative curve is commutative.

Reiten-Van den Berg (2002) work more generally, classifying abelian connected k-linear categories which

- are noetherian,
- Ext-finite,
- hereditary, and
- satisfy Serre duality.
Let A be coherent connected \mathbb{N}-graded algebra and let

- $\text{coh}A = \text{cat. of (graded right) coherent modules}$
- $\text{tors}A = \text{full subcat. of right-bounded modules}$.

Definition (Polishchuk (2005))

$\text{cohproj}A := \text{coh}A/\text{tors}A$

Remark

If A is noetherian, $\text{cohproj}A \equiv \text{proj}A$.
Theorem (Zhang (1998))

If A is connected, gen. in degree 1 and regular of dim 2 then

$$A \cong k \langle x_1, \ldots, x_n \rangle / \langle b \rangle$$

where $n \geq 2$, $b = \sum_{i=1}^{n} x_i \sigma(x_{n-i+1})$ and $\sigma \in \text{Aut } k \langle x_1, \ldots, x_n \rangle$.

Theorem (Piontkovski (2008))

$n > 2$ implies A is non-noetherian and coherent. If $\mathbb{P}_n^1 := \text{cohproj} A$, then \mathbb{P}_n^1 depends only on n. Furthermore, $\mathbb{P}_2^1 \equiv \text{coh}\mathbb{P}^1$.
Let X be smooth elliptic curve $/k = \mathbb{C}$.

Theorem (Polishchuk (2002))

For each $\theta \in \mathbb{R}$, \exists t-structure on $D^b(X)$ w/heart C^θ such that

- $D^b(C^\theta) \equiv D^b(X)$,
- $C^\theta \equiv \text{cohproj}B$ for a right coherent \mathbb{Z}-algebra B.
Our Goal

Suppose

- X is scheme
- \mathcal{L} is line-bundle on X generated by $n + 1$ global sections.

Given (X, \mathcal{L}), there exists a morphism $f : X \to \mathbb{P}^n$.

Construction of f

f is induced by taking Proj of a canonical map

$$\mathbb{S}(\text{Hom}(\mathcal{O}_X, \mathcal{L})) \to \bigoplus_i \text{Hom}(\mathcal{O}_X, \mathcal{L}^\otimes i)$$

Goal of Talk

Generalize to construct maps from noncommutative elliptic curves to \mathbb{P}^n_1.
Part 2

Algebras Constructed from a Sequence
The orbit algebra of a sequence

If $\mathcal{L} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is seq. of objects in a category C, then

$$(B_{\mathcal{L}})_{ij} = \text{Hom}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$$

with mult. $= \text{composition}$ makes $B_{\mathcal{L}} = \bigoplus_{i,j \in \mathbb{Z}} (B_{\mathcal{L}})_{ij}$ a \mathbb{Z}-algebra, i.e.:

- $B_{ij}B_{jk} \subset B_{ik}$,
- $B_{ij}B_{kl} = 0$ for $k \neq j$, and
- the subalgebra B_{ii} contains a unit.
Let $\mathcal{L} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ be seq. of objects in a category C.

The noncommutative symmetric algebra of a sequence

We let $S^{nc}(\mathcal{L})$ be the \mathbb{Z}-algebra generated by

$$S^{nc}(\mathcal{L})_{i,i+1} := \text{Hom}(\mathcal{L}_{-(i+1)}, \mathcal{L}_{-i})$$

with relations equal to the kernel of composition

$$\text{Hom}(\mathcal{L}_{-(i+1)}, \mathcal{L}_{-i}) \otimes \text{Hom}(\mathcal{L}_{-(i+2)}, \mathcal{L}_{-(i+1)}) \to \text{Hom}(\mathcal{L}_{-(i+2)}, \mathcal{L}_{-i}).$$

An observation

By construction, there is a morphism of \mathbb{Z}-algebras

$$S^{nc}(\mathcal{L}) \to B_\mathcal{L}.$$
Theorem (N (2019), Chan-N (2019))
Let \(M \) be a bimodule over a pair of division rings such \(M \) and \(M^* \) are left- and right-fd, and \(M \cong M^{**} \). Then \(\exists \mathcal{L} \) such that
\[
S^{nc}(M) \cong S^{nc}(\mathcal{L}).
\]

Theorem (Bondal-Polishchuk (1993), Van den Bergh (2011))
For every three-dimensional regular quadratic elliptic \(\mathbb{Z} \)-algebra \(A \), there exists an elliptic curve and a sequence of line bundles \(\mathcal{L} \) over it, such that
\[
A \cong S^{nc}(\mathcal{L}).
\]

It follows that the coordinate rings of noncommutative \(\mathbb{P}^1 \)'s and noncommutative \(\mathbb{P}^2 \)'s are noncommutative symmetric algebras.
Part 3

Helices
Definition of a Helix (The Hom-finite Case)

Let
- C be abelian, Hom-finite, k-linear category
- $\mathcal{L} := (\mathcal{L}_i)_{i \in \mathbb{Z}}$ a sequence in C.

Definition

\mathcal{L} is a helix if, $\forall \ i \in \mathbb{Z}$,

1. $\text{End}(\mathcal{L}_i) =: D_i$ is division ring
2. The canonical map

 $$\mathcal{L}_i \rightarrow \ast \text{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1}) \otimes_{D_{i+1}} \mathcal{L}_{i+1}$$

 is monomorphism with coker $\cong \mathcal{L}_{i+2}$
3. the canonical map

 $$\ast \text{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1}) \rightarrow \text{Hom}(\mathcal{L}_{i+1}, \mathcal{L}_{i+2})$$

which exists by (2), is an isomorphism.
Let $\mathcal{C} = \text{coh} \mathbb{P}^1$ and let \mathcal{L} be defined by $\mathcal{L}_i := \mathcal{O}_{\mathbb{P}^1}(i)$. Then \mathcal{L} is a helix.

The map from (2) is the first nonzero arrow of the Euler exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^1}(i) \to \mathcal{O}_{\mathbb{P}^1}(i+1)^{\oplus 2} \to \mathcal{O}_{\mathbb{P}^1}(i+2) \to 0.$$

Proposition

Suppose X is a projective variety and \mathcal{L} is a line bundle generated by two global sections. Then $\{\mathcal{L}^\otimes i\}_{i \in \mathbb{Z}}$ is a helix in $\text{coh}X$.

Adam Nyman
Proposition (Chan-N. (2019))

If \(\mathcal{L} \) is a helix, then there is an isomorphism

\[
\mathbb{S}^{nc}(\text{Hom}(\mathcal{L}_{-1}, \mathcal{L}_0)) \xrightarrow{\text{ir}} \mathbb{S}^{nc}(\mathcal{L}).
\]

Thus, there exists a homomorphism

\[
\mathbb{S}^{nc}(\text{Hom}(\mathcal{L}_{-1}, \mathcal{L}_0)) \rightarrow B_{\mathcal{L}}
\]

which is an isomorphism in degree one.

This is the noncommutative version of the map

\[
\mathbb{S}(\text{Hom}(\mathcal{O}_X, \mathcal{L})) \rightarrow \bigoplus \text{Hom}(\mathcal{O}_X, \mathcal{L}^\otimes i)
\]

inducing \(f : X \rightarrow \mathbb{P}(\text{Hom}(\mathcal{O}_X, \mathcal{L})) \).
Part 4

Main Results
Theorem (Chan-N. (2019))

Suppose \mathcal{L} is a helix such that

- $\text{Hom}(\mathcal{L}_j, \mathcal{L}_i) = 0 \ \forall j > i$

 ($\iff B_{\mathcal{L}}$ is connected),

- there exists $n > 0$ such that $\text{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i+l}) = 0$ for all $l \geq n$

 (Serre vanishing for \mathcal{L}).

Then $\text{Tors}B_{\mathcal{L}} \subset \text{Gr}B_{\mathcal{L}}$ is localizing and the morphism from the proposition induces a map of spaces

$$\text{Proj}B_{\mathcal{L}} \rightarrow \text{Proj}^{nc}(\text{Hom}(\mathcal{L}_{-1}, \mathcal{L}_0)).$$
Let X be a smooth elliptic curve over $k = \mathbb{C}$.

Theorem (Chan-N. (2019))

Let $n \geq 2$ and let $\mathcal{O}_X(1)$ correspond to a point $p \in X$. Then

1. there exists a unique helix \mathcal{L} on $\text{coh}X$ with $\mathcal{L}_0 = \mathcal{O}_X$ and $\mathcal{L}_1 = \mathcal{O}_X(n)$,
2. the ring $B_\mathcal{L}$ is coherent and non-noetherian for $n > 2$,
3. $\text{cohproj}^{\text{Snc}}(\text{Hom}(\mathcal{L}_{-1}, \mathcal{L}_0)) \equiv \mathbb{P}^1_n$,
4. The map from the main theorem

 \[
 \text{cohproj}B_\mathcal{L} \to \mathbb{P}^1_n
 \]

 is a double cover, and
5. If $n = 2$ the map above is the adjoint pair of functors $\text{coh}X \to \text{coh}\mathbb{P}^1$ coming from a double cover $X \to \mathbb{P}^1$.
Thank you!