Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts

Richard D. Brodeura,*, Mary Beth Deckerb, Lorenzo Ciannellic, Jennifer E. Purcelld, Nicholas A. Bonde, Phyllis J. Stabenof, Erika Acunag, George L. Hunt Jr.h

a NOAA Northwest Fisheries Science Center, Hatfield Marine Science Center, Newport, OR 97365, USA
b Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
c College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
d Western Washington University, Shannon Point Marine Center, Anacortes, WA 98221, USA
e Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA
f NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
g NOAA Alaska Fisheries Science Center, Seattle, WA 98115, USA
h School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA

Available online 6 April 2008

Keywords:
Scyphomedusae
Ecosystems
Biophysical conditions
Zooplankton
Walleye pollock
Climate change
Global warming
Ice
North Pacific Ocean

Abstract

A steep increase in jellyfish biomass, primarily Chrysaora melanaster, over the eastern Bering Sea shelf was documented throughout the 1990s. Their biomass peaked in summer 2000 and then declined precipitously, stabilizing at a moderate level after 2001. The onsets of the outburst and decline coincided with transitions between climatic regimes. Specifically, 1989 marked the beginning of a period of moderate temperatures in the eastern Bering Sea, after the warm conditions of the late 1970s through the 1980s. Very warm conditions came to the eastern Bering after 2000, as evidenced by decreased ice cover in winter and increased total heat content and surface water temperatures in summer. We examined the relationships between jellyfish biomass and temperature, ice cover, atmospheric variables, current patterns, zooplankton biomass, and associated fish biomass in two regions of the Middle Shelf Domain (SE and NW) by use of Generalized Additive Models (GAM). We found density-dependent interactions within and between jellyfish biomass in the two regions related to the flow regime, and demonstrated a linkage between biophysical indices and jellyfish biomass. In particular, ice cover (SE and NW), sea-surface temperature in spring (SE) and summer (NW), and wind mixing (SE) all influenced jellyfish biomass. In addition, the importance of juvenile pollock biomass (SE) and zooplankton biomass (NW) suggest that jellyfish biomass was sensitive to the availability of prey. Since most climate models suggest continued warming is likely in the Bering Sea, the jellyfish populations may remain at moderate levels there but will likely shift northward into the Arctic Ocean.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Evidence is accumulating that gelatinous zooplankton populations have increased recently in many regions of the world (Graham, 2001; Mills, 2001; Purcell et al., 2001; Link and Ford, 2006; Kawahara et al., 2006; Lynam et al., 2006). Jellyfish are generally detrimental to fisheries because they feed on zooplankton and ichthyoplankton, and so are both predators and potential competitors of fish (Purcell and Arai, 2001), and because they interfere with fishing directly (reviewed in Purcell et al., 2007). The effects of jellyfish population outbursts on ecosystems and the economies that depend on them can be profound (Purcell and Arai, 2001; Brodeur et al., 2002; Daskalov, 2002; Lynam et al., 2005b, 2006). Factors including climate change, overfishing, eutrophication, and species introductions have been suggested to favor jellyfish populations (Shiganova, 1998; Arai, 2001; Parsons and Lalli, 2002; Purcell, 2005; Attrill et al., 2007; Purcell et al., 2007).

One of the most dramatic documented increases in jellyfish has been on the eastern Bering Sea shelf, where a substantial increase in jellyfish biomass was observed throughout the 1990s (Brodeur et al., 2002). In the relatively unpollluted Bering Sea, only climate variability and fishing are probable causes for changes in the jellyfish population. The southeast Bering Sea shelf was relatively warm between 1999 and 2005, with winter depth-averaged temperatures over the southeastern shelf \(\sim3\) °C warmer than in the 1990s. Winters since 2000–2001 have had sea ice coverage typically 30–80% less than the climatological average (1972–2000); the retreat of this ice in spring since 2001 was not only earlier, but also more rapid than average (Overland and Stabeno, 2004; Grebmeier et al., 2006). This anomalous warmth has been associated with below-normal sea level pressure (SLP) and...
below-normal winds from the north during winter, and hence a tendency for more mild maritime air and fewer outbreaks of frigid continental air. In addition, wind conditions have favored greater transports of relatively warm water from the south into the Bering Sea through Unimak Pass (Stabeno et al., 2007). The summers between 2000 and 2005 also were warm, averaging ca. 2 °C warmer than during the late 1990s. This summer warming appears to have been due to a carry-over of heat from the unusually warm winters combined with summer weather conditions, which have featured above-normal SLP, and hence reduced wind stress and anomalously strong solar heating of the water column. The sea-surface temperature (SST) on the southeast Bering Sea shelf during June through August of 2002–2005 was more than 0.7 °C warmer than any other 4-year period extending back to 1948, based on a record from the National Center for Environmental Prediction (NCEP).

During the last decade, the warm spring and summer sea-surface temperatures in the eastern Bering Sea have had significant impacts on the marine ecosystems. Massive blooms of the coccolithophorid, Emiliania huxleyi, have occurred in most summers since 1997, major shifts in the species composition and biomass of gelatinous and meso-zooplankton have occurred in summer, and populations of pinnipeds and several species of seabirds nesting at the Pribilof Islands have declined (Brodeur et al., 1999; Stockwell et al., 2001; Hunt and Stabeno, 2002; Napp et al., 2002; Schumacher et al., 2003; Coyle et al., in press).

Variations in climate, particularly temperature and salinity, have been linked to variations in jellyfish abundance in a number of studies (Lynam et al., 2004, 2005a; reviewed in Purcell, 2005; Attrill et al., 2007). Jellyfish populations are opportunistic, responding quickly to changes in the physical and biological milieu, both by increasing production rates of young jellyfish from the benthic polyp stage, and by increased feeding, growth, and reproduction of medusae in good conditions. Our hypothesis is that climate-induced changes in ocean biotic and abiotic conditions caused variations in the jellyfish population in the Bering Sea by affecting the reproduction, survival, and growth of large jellyfish, primarily Chrysaora melanaster. Connections between environmental factors and abundance and survival of various terrestrial and aquatic organisms have been elucidated recently by use of Generalized Additive Models (GAM) (e.g., Guisan et al., 2002; Logerwell et al., 2003; Cannelli et al., 2004). Herein, we use GAM to explore possible connections between the dramatic changes in jellyfish biomass over the past three decades and physical and biological conditions in the eastern Bering Sea.

2. Methods

Trawl collections were made at each of 356 stations arranged in a grid pattern (36 km x 36 km) during daylight hours from June through August of each year by the Resource Assessment and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (Brodeur et al., 1999, 2002). The trawl, which had a 26.5 m headrope and 34.1 m footrope with graded mesh (10 cm at the mouth to 3.8 cm in the codend), was towed on the bottom.
Specifically, given a response variable \(y_i \) (covariates), the relationship between the two is established by \(\text{Generalized Additive Models (GAM)} \). These are nonlinear regression techniques in which the relationships between response variables and forcing variables are modeled with nonparametric smooth functions (Hastie and Tibshirani, 1990; Wood, 2004, 2006). When using GAM, it is unnecessary to specify the type of relationship between the forcing and response variables \(a \) \(\text{priori} \), because these are determined from the data. Specifically, given a response variable \(y \) and a set of \(m \) forcing variables \(x \) (covariates), the relationship between the two is established by:

\[
y_j = x + \sum_{i=1}^{m} g_i(x_{ji}) + \epsilon_i.
\]

The \(g_i \) are smooth nonparametric functions, typically natural cubic splines (Green and Silverman, 1994). 'Smooth' means that the function \(g_i(x_{ji}) \) is continuous (no jumps), and it has continuous first and second derivatives (no abrupt change of the slope). In the case of cubic regression splines, each smooth is determined as an expansion of \(k \) basis functions and by the respective linear coefficients:

\[
g(x) = x + \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 + \cdots + \beta_k x_k + \epsilon_i.
\]

The \(x \) are 'knots' located within the range of the \(x \) covariate. The number of the basis functions \(k \) is proportional to that of the knot locations \(\{k - 2 \} \) and determines the level of roughness (i.e., 'wiggliness') of the resulting smooth, with a rougher fit corresponding to more basis functions and knots. In recent GAM applications, the degree of smoothness can be simultaneously and objectively estimated by minimizing the generalized cross validation (GCV), a measure of the leave-one-out mean predictive square error (Green and Silverman, 1994).

To guarantee that the model is identifiable (i.e., that there is a unique set of functions describing the relationships between forcing and response variables), each smooth estimate is constrained to average to 0 over the entire data set, i.e. \(\sum_{i=1}^{n} g_i(x_{ji}) = 0 \), where \(n \) is the sample size. Thus, to scale the model prediction back to the level of the response variable, an intercept term \(z \) (typically equal to the mean of \(y \)) is added to the sum of all the smooth terms. The error terms \(\epsilon_i \) are generally assumed to be independent and identically distributed with zero mean and common variance.

The SE and NW regions were analyzed separately because the biomass of these two centers of distribution (Fig. 4), and because the biomass of these two regions did not appear to fluctuate in concert across the middle shelf. Jellyfish biomass data were available for 1975 and 1979–2005, although statistical analysis and modeling was conducted only through 2004 due to lack of some environmental variables for 2005 (Fig. 2). To homogenize the variance and guarantee normality of the data, we log-transformed the dependent variable, jellyfish catch per unit effort (CPUE).

We applied a forward selection strategy to both the SE and the NW GAM regressions based on the minimization of the GCV, a measure of the model prediction error. Covariates were added one at a time in the model, in the order given in Table 1. The order in which covariates were included in the model reflected our prior knowledge of the variables affecting interannual variability of

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description and source</th>
</tr>
</thead>
<tbody>
<tr>
<td>nwbiom</td>
<td>Catch per unit effort (CPUE) of jellyfish from quantitative bottom trawl surveys of the eastern Bering Sea conducted by the Alaska Fisheries Science Center (AFSC). Standardized jellyfish biomass (kg ha(^{-1})) calculated for the southeast and northwest regions of the Middle Shelf Domain.</td>
</tr>
<tr>
<td>s expressive</td>
<td>March–May sea-surface temperature at 57°N, 164°W (southeast region) and 59°N, 171°W (northwest region) derived from a National Centers for Environmental Prediction (NCEP) reanalysis. When ice is present, values represent the estimated temperature of the ice surface.</td>
</tr>
<tr>
<td>s smalltemp</td>
<td>June–August sea-surface temperature at 57°N, 164°W (southeast region) and 59°N, 171°W (northwest region) derived from a NCEP reanalysis.</td>
</tr>
<tr>
<td>wstressna</td>
<td>The along-peninsula component of the wind stress (N m(^{-1})) at Unimak Pass (54°N, 165°W) for the periods November–April and May–June from the Bering Sea Climate website: http://www.beringclimate.noaa.gov/index.html</td>
</tr>
<tr>
<td>wmixxj</td>
<td>Wind mixing indices represent the average value of friction velocity (u^*) for the period 1–31 May near St. Paul Island (57°1.5′N, 170°2′W) and for the period June–July at NOAA Mooring 2 (5°N, 164°W), from Bering Sea Climate website.</td>
</tr>
<tr>
<td>currentag</td>
<td>Distance (km) of the ending position from the center of the NW jellyfish aggregation (assumed to be 60°N, 172°W) that Ocean Surface CURrent Simulation (OSCURS) model drifters launched from the Unimak area (55°N 165°W) traveled from simulated launch (February 1) to retrieval (May 31); lagged by one year. Drifters ending south of the launch site were given negative values. From: http://las.pfeg.noaa.gov/las_oscur/main.pl</td>
</tr>
<tr>
<td>icecover</td>
<td>Ice cover index constructed from a combination of ice-related parameters from multiple sources from Bering Sea Climate website which corresponds with the atmospheric forcing in winter and appears to be the primary factor controlling cold pool extent in summer.</td>
</tr>
<tr>
<td>iceretreat</td>
<td>The day of ice retreat is defined as the number of days after 15 March for which sea ice coverage in the area 56°–58° N, 163°–165° W exceeds 10%. The date of ice retreat is most sensitive to the forcing in spring, and primarily impacts the nature and timing of the spring phytoplankton bloom on the shelf (Hunt and Stabeno, 2002). From Bering Sea Climate website.</td>
</tr>
<tr>
<td>mszoop</td>
<td>Biomass (mg m(^{-2})) of zooplankton on the Middle Shelf (mszoop) and the Outer Shelf (oszoop) based on summer sampling by Hokkaido University (HU) Research Vessel Oshoro maru. Provided by N. Shiga (HU) and J. Napp (AFSC).</td>
</tr>
<tr>
<td>nwpollock sepollock</td>
<td>Juvenile (<19 cm in length) walleye pollock biomass CPUE (kg ha(^{-1})) collected from the same surveys as the jellyfish in both middle shelf regions.</td>
</tr>
<tr>
<td>nwforage seforage</td>
<td>Forage fish complex (Pacific herring, eulachon, and capelin) biomass CPUE (kg ha(^{-1})) collected from the same surveys as the jellyfish in both middle shelf regions. Data provided by Dan Nichol (AFSC).</td>
</tr>
</tbody>
</table>
jellyfish biomass. A covariate was retained if it caused a decrease of the model GCV. Two covariates expressing the same physical or biological quantity, but in a different time of the year or units (e.g., spring and summer sea-surface temperature, ice cover and retreat) were never included simultaneously in the same model. To avoid excessive parameterization of the term smoothers, the degree of freedom of each covariate term were limited to 4. If the addition of a covariate caused an increase of the significance term (i.e., p-value) of another covariate above 0.05, the latter term was dropped from the model if its removal caused a decrease of the model GCV.

To assess the goodness of fit of the final SE and NW jellyfish models, we simulated the entire time series of jellyfish biomass from the initial values and from the environmental forcing parameters used the GAM analysis. For example, in a year ‘t’, the SE jellyfish biomass was derived from the co-occurring (year t) observed environmental conditions and the predicted SE jellyfish biomass in the year t – 1. In the NW simulations, we used the predicted SE jellyfish biomass from the preceding year. In addition, the error of both models (i.e., residuals) was added to the predictions and the final results were the average of 500 replications.

3. Results

The catch of all medusae combined among all regions was less than 50 × 10^3 m each summer from 1975 to 1990 (Fig. 3). It rose quickly in the 1990s and averaged around 150 × 10^3 m. In 1999, the mean catch of 4.213 kg ha^-1 (SE = 0.359) was about 20 times that in 1982. The catches nearly doubled again in 2000 due to seven unusually large catches primarily within shallow stations in Bristol Bay, all of which exceeded the highest previous catch per station. The catch plummeted in 2001, and has remained at a moderate level during the subsequent four years (Fig. 3). In the early period of low jellyfish biomass (1982–1989), the largest biomass was mainly in the Southeast (SE) Middle Shelf Region (Fig. 4). In the escalating phase, jellyfish biomass increased in the Northwest (NW) Middle Shelf Region as well. At the peak (2000), biomass was high in both the SE and NW Middle Shelf Regions and extended into the SE Inner (<50 m depth) Shelf Region. In the declining phase, biomass was equally low in the SE and NW. Since 2001, jellyfish biomass has been greatest near the Alaska Peninsula and northwest of the Pribilof Islands, at the division between SE and NW regions (Fig. 4).

From a GAM analysis, we found that the SE jellyfish biomass was mainly correlated with the SE jellyfish biomass in the preceding year, with abiotic conditions in spring (i.e., ice cover, spring sea-surface temperature, wind mixing in May), and with biotic conditions in summer (i.e., juvenile walleye pollock). The resulting SE model fit well with the data (R^2 = 0.896; Table 2).

The relationship between juvenile pollock biomass and jellyfish in the SE was nonlinear with saturation toward high values of pollock biomass (Fig. 5). The possible saturation effect at the highest values of jellyfish biomass in the preceding year on the current jellyfish biomass suggests compensation, and an overall reduction in biomass growth as the overall biomass increased. Note that the biomass growth rate is proportional to the difference between two consecutive values of jellyfish biomass, and that negative density dependence or compensation is defined by a decrease of jellyfish biomass growth rates in spite of an increase of jellyfish biomass. Moderately cool to warm spring surface temperatures
and low ice cover were associated with increased SE jellyfish biomass, and biomass anomalies were lowest at the warmest spring temperatures and in years when ice cover was unusually high. Wind mixing in May had a strong negative relationship with SE jellyfish biomass.

Jellyfish biomass in the NW region was highly correlated ($R^2 = 0.938$; Table 2) with SE jellyfish biomass the preceding year, summer sea-surface temperature, ice cover, zooplankton biomass on the middle shelf, and displacement (current lag, i.e., drifter displacement from the center of the NW jellyfish distribution lagged...
Displacement had a more positive contribution toward low rather than high distances (Fig. 5). Summer temperature and ice cover were nonlinearly related to jellyfish biomass in the NW, with a minimum toward intermediate values (Fig. 5). The 1-year lagged SE jellyfish biomass had a strong positive relationship with the NW jellyfish biomass. A model using the potential effect of SE jellyfish biomass on NW jellyfish biomass without a lag did not yield a good fit, indicating that the relationship of the SE jellyfish in the NW was more likely driven by transport than a set of co-occurring and beneficial survival events. Lagged NW biomass in the SE model also did not yield a good fit, indicating that the process worked only in the direction of the prevailing current (SE toward NW) (Table 2). Residuals from both the NW and the SE GAM models were not autocorrelated and, from a visual assessment, none of the residual patterns from the inspected models presented signs of heteroscedasticity or had strong departure from normality. Forward simulations of the best SE and NW models fit the data extremely well in both regions (Fig. 6).

4. Discussion

Our 28-year time series of jellyfish catches extended through two major regime shifts in the Bering Sea, one beginning in 1989 and another in 1999 (Hare and Mantua, 2000; Hunt and Stabeno, 2002; Bond et al., 2003). Environmental conditions and jellyfish biomass in the Bering Sea changed dramatically with each regime shift (Table 3). Between 2001 and 2005, there were decreases in ice cover (2002 was an exception) and increases in sea-surface temperature, and total heat content in summer. There have been substantial decreases in summer zooplankton biomass since 2001 relative to the 1990s (J. Napp, Alaska Fisheries Science Center, personal communication), which may have decreased the food available for medusae. The SE jellyfish biomass was most sensitive to summertime biological conditions (the juvenile pollock biomass) and to spring physical conditions (temperature and ice cover). In contrast, the NW bio-

![Fig. 5. Additive effects of the significant covariates included in the SE (top row) and in the NW (bottom row) jellyfish biomass models. Grey areas indicate 95% confidence limits. Axis labels are defined in Table 1.](image-url)

Table 2

Results from all models fitted in the GAM analysis of the southeast (SE) and northwest (NW) jellyfish biomass in the Bering Sea. The degrees of freedom of each term were limited to 4.

<table>
<thead>
<tr>
<th>Region, terms</th>
<th>R² (%)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE sebiomlag</td>
<td>59.0</td>
<td>0.853</td>
</tr>
<tr>
<td>sebiomlag</td>
<td>51.5</td>
<td>1.086</td>
</tr>
<tr>
<td>sebiom</td>
<td>45.5</td>
<td>1.112</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp</td>
<td>68.9</td>
<td>0.756</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, iceretreat</td>
<td>75.6</td>
<td>0.922</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, icecover</td>
<td>78.6</td>
<td>0.827</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop</td>
<td>66.9</td>
<td>0.787</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay</td>
<td>75.2</td>
<td>0.620</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, mszoop</td>
<td>67.4</td>
<td>0.833</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay</td>
<td>77.2</td>
<td>0.606</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay, seforage</td>
<td>76.2</td>
<td>0.626</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay, seforage</td>
<td>75.9</td>
<td>0.677</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay, seforage</td>
<td>75.9</td>
<td>0.677</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, wmixmay, sepollock</td>
<td>88.3</td>
<td>0.414</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, wmixmay, sepollock</td>
<td>89.2</td>
<td>0.361</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, sepollock</td>
<td>89.8</td>
<td>0.389</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, sepollock, wstressna</td>
<td>91.0</td>
<td>0.370</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, sepollock, wstressna</td>
<td>91.0</td>
<td>0.370</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, oszoop, sepollock, wstressna</td>
<td>91.0</td>
<td>0.370</td>
</tr>
<tr>
<td>sebiomlag, sesprtemp, wmixmay, sepollock, icecover</td>
<td>89.6</td>
<td>0.356</td>
</tr>
<tr>
<td>NW nwbiomlag</td>
<td>67.5</td>
<td>1.288</td>
</tr>
<tr>
<td>sebiomlag</td>
<td>65.1</td>
<td>1.469</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp</td>
<td>67.5</td>
<td>1.288</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat</td>
<td>76.9</td>
<td>1.012</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat</td>
<td>84.1</td>
<td>0.777</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat, oszoop</td>
<td>74.1</td>
<td>1.162</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat, oszoop, wmixmay</td>
<td>83.1</td>
<td>0.869</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat, oszoop, wmixmay</td>
<td>92.9</td>
<td>0.493</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat, oszoop, current</td>
<td>91.9</td>
<td>0.592</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, iceretreat, oszoop, current</td>
<td>93.8</td>
<td>0.463</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, currentlag</td>
<td>91.1</td>
<td>0.536</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, currentlag</td>
<td>93.3</td>
<td>0.531</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, currentlag</td>
<td>93.3</td>
<td>0.508</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, currentlag</td>
<td>93.0</td>
<td>0.552</td>
</tr>
<tr>
<td>sebiomlag, nwsprtemp, currentlag</td>
<td>93.6</td>
<td>0.506</td>
</tr>
</tbody>
</table>

Bold models are those with the lowest generalized cross validation (GCV).
mass was related most strongly to physical variables in the summer; however, a marked improvement in the NW model resulted from inclusion of the lagged SE jellyfish biomass. Our results demonstrate that the dynamics of the jellyfish population in the Bering Sea were different in distinct oceanographic regions, similar to regional differences among jellyfish populations in the North Sea (Ly- nam et al., 2005a), and may need to be examined on finer geographic scales than the analyses presented here.

Local biotic and abiotic factors are important for the success of both the benthic and planktonic stages. Temperature and salinity have been shown in species other than C. melanaster to affect asexual production of jellyfish from the polyps (reviewed in Purcell, 2005, 2007) and growth of the young pelagic jellyfish (ephyrae) (Widmer, 2005). Unfortunately, nothing is known about the location or conditions for strobilation of C. melanaster polyps. Because the polyps must live on hard surfaces, and much of the eastern Bering Sea shelf seabed is composed of sand or mud and is not suitable as polyp habitat, we assume that their major substrates in our study region are the Alaskan Peninsula and the Aleutian and Pribilof islands. Jellyfish distributions in summers of moderate abundance (before 1989 and after 2001) show concentrations in these areas (Fig. 4). High SE jellyfish biomass in years with moderate spring temperatures (Fig. 2) suggests that high temperatures may not promote ephyrae production. Interpretation of the relationships of biotic variables with jellyfish biomass is confounded by abiotic effects on the many components of the food web and their interactions. Nevertheless, it is likely that climatic factors also would affect jellyfish biomass through effects on lower trophic-level productivity, which would affect the entire food web (Behrenfeld et al., 2006). Thus, high jellyfish biomass would result from environmental conditions that favor production and survival of the ephyrae and their zooplankton prey.

We have developed a conceptual model (Fig. 7) that may enhance understanding of the effects of biophysical forcing on jellyfish biomass during the different regimes. During early ice retreat and warm water conditions, seasonal stratification of the water column is delayed until May, leading to a relatively late spring bloom in warm water, and moderate production of mostly very small copepod genera such as Pseudocalanus and Acartia (Hunt and Stabeno, 2002). This outcome would be expected to set up unfavorable feeding and survival conditions for adult jellyfish. In the periods of low-moderate jellyfish biomass before 1989 and after 2001, we hypothesize that production of new medusae was in balance with export (transport and mortality). Between 1990 and 1999 when jellyfish biomass was increasing, an early spring bloom led to high production of zooplankton food (Hunt and Stabeno, 2002; Napp et al., 2002), which likely resulted in good survival and growth of ephyrae leading to high jellyfish biomass. The extremely high jellyfish populations in 2000, in combination with high numbers of other zooplanktivores, may have reduced the available standing stocks of zooplankton and triggered a negative feedback loop (dashed line in Fig. 7) that resulted in lower zooplankton overwintering survival and a decline in jellyfish in subsequent years. Alternatively, high overwintering mortality or changes in transport between sampling in 2000 and 2001 could have reduced the adult jellyfish population markedly. Unfortunately, data are lacking to test these alternative hypotheses.

During the dramatic increase of medusa biomass in the 1990s, we hypothesize that new production of medusae was much greater than export. Conditions may have been more favorable than those in the pre- and post-bloom periods for production of new medusae (more polyps, buds, more strobilation, higher survival), retention of adult medusae (low transport, low mortality), or both. Baier and Napp (2003) found that a large copepod (Calanus marshallae), which dominates the meso-zooplankton of the eastern Bering Sea middle shelf, showed better survival during cool years with more southerly sea ice extent. Increased C. marshallae biomass may result in better survival and higher

Table 3

<table>
<thead>
<tr>
<th>Period</th>
<th>Jellyfish biomass</th>
<th>Location of maximum biomass</th>
<th>Sea-surface temperature</th>
<th>Sea ice cover</th>
<th>Large zooplankton biomass</th>
<th>Age-0 pollock biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975–1989</td>
<td>Low</td>
<td>SE MS</td>
<td>Cool, then warm</td>
<td>High, then low</td>
<td>Moderate* to high</td>
<td>Moderate to high</td>
</tr>
<tr>
<td>1990–1999</td>
<td>Increasing</td>
<td>SE & NW MS</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate to low</td>
<td>Moderate</td>
</tr>
<tr>
<td>2000</td>
<td>Peak</td>
<td>SE & NW MS</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>2001–2004</td>
<td>Moderate</td>
<td>SE & NW MS</td>
<td>Very warm</td>
<td>Low</td>
<td>Low</td>
<td>Very high, then moderate</td>
</tr>
</tbody>
</table>

*Where “moderate” is defined as close to the long-term average.

Fig. 6. Forward simulations of the best-fit model for jellyfish biomass in the SE (top) and NW (bottom) shelf regions of the Bering Sea.
jellyfish biomass in the SE, with subsequent advection to the NW. With flourishing adult populations, sexual reproduction would be great and lead to increased polyp populations. In addition, conditions during this period may have been favorable for survival of adult jellyfish through the winter. Previous reports of large C. melanaster in ice-free waters during spring (Brodeur et al., 2002) lend support to this possibility. Additionally, in May, 2006, large jellyfish were seen at the ice edge, and caught at depth north of moorings M2 and M4 in the Bering Sea (Hunt, 2006, large jellyfish were seen at the ice edge, and caught at depth north of moorings M2 and M4 in the Bering Sea (Hunt and Hyrenbach, personal communication). Other species over-winter in some locations; for example in Norwegian fjords, jellyfish may live multiple years (Jarms et al., 1999).

We recognize that although our sampling grid is fixed in space each year, the distribution of jellyfish is fluid and can extend to the northern Bering Sea beyond our sampling region during warm years, as observed with some pelagic fish distributions in recent years (Grebmeier et al., 2006). A northward shift in the distribution of jellyfish would be expected during warming ocean conditions and C. melanaster is known to be abundant in the Arctic Ocean, well north of our study area (Raskoff et al., 2005), JEP pers. obs.). Production of ephyrae along the Aleutian Peninsula might have been reduced by recent unusually warm temperatures and increased in cooler rocky habitats farther north (e.g., St. Matthew and St. Lawrence islands). It also is possible that there was an increase in the northward advection of jellyfish, but we have no data indicating a significant change in northward flows on the shelf starting in 2001.

Important conclusions from our work are that increasing ocean temperatures associated with global warming may not necessarily lead to a higher biomass of gelatinous macrozooplankton in all ecosystems, and that a suite of biophysical factors probably is responsible for jellyfish changes observed in the world’s oceans (Mills, 2001; Purcell, 2005; Purcell et al., 2007). Also, our analysis indicates that the links between climate and jellyfish biomass are complex, probably involving the survival and dispersal of life-stages that are not easily sampled (i.e., polyps, ephyrae, and planulae). Most species studied to date have been temperate and have been shown increased production in the laboratory at warm temperatures. Species living near the upper limits of their temperature ranges may not increase in abundance with further warming (Purcell, 2005; Purcell et al., 2007).

Although many physical variables display a linear response to climate change, the behavior of most biological components of large marine ecosystems has been shown to be nonlinear (Hsieh et al., 2005). Lower trophic-level organisms in the Pacific Ocean, including most zooplankton taxa, show more sensitivity to changing climate conditions than higher trophic-level species (Benson and Trites, 2002), and may be less likely to express nonlinear responses (Hays et al., 2005). Given the abundant fisheries resources available in boreal systems such as the Bering Sea (Connors et al., 2002; Hunt et al., 2002; Schumacher et al., 2003) and the potential for competition with or predation upon these resources by gelatinous zooplankton (Purcell and Arai, 2001; Brodeur et al., 2002; Lynam et al., 2005b), relatively minor changes in jellyfish biomass may have profound effects on the ecosystem and fisheries. Additionally, due to their conspicuous presence, jellyfish can serve as key sentinel species for monitoring changes in this highly productive, subarctic ecosystem and elsewhere in the world’s oceans (Hays et al., 2005; Hay, 2006).

Acknowledgements

We thank Gary Walters and members of the RACE Division at the Alaska Fisheries Science Center for diligently collecting the biomass and environmental data since the beginning of the trawl surveys, and Jeff Napp for use of zooplankton data. Earlier versions of the manuscript benefited from comments by Hal Batchelder and two anonymous reviewers. We acknowledge the following funding sources: National Marine Fisheries Service, Pacific Marine Environmental Laboratory, NOAA Center for Sponsored Coastal Ocean Research, the National Science Foundation (NSF) Office of Polar Programs (Grant 0327308), and the North Pacific Research Board (Project 606). This material is based upon work supported by the National Science Foundation under Grants No. 0621153 to LC and 0620493 to MBD (Collaboration in Mathematical Geosciences). This paper was presented at the PICES/GLOBEC Symposium on “Climate variability and ecosystem impacts on the North Pacific: A basin-scale synthesis” held April 19–21, 2006, in Honolulu, USA.
References