Give detailed explanations for your answers. There are four problems. Each is worth 25 points.

1. Figure 1 shows an oscillating string. The equation of the oscillating string is \(y = F(x, t) = (\sin x)(\cos t) \) where \(x \in [0, \pi) \), \(t \geq 0 \). Here, for a fixed time \(t = t_0 \), \(y = F(x, t_0) \) describes the shape of the string at time \(t_0 \). In Figure 1 the string at time \(t = t_0 \) is black. To indicate the motion of the string, I added several previous positions of the string in various shade of gray. Consider the following seven quantities:

\[
F(x_0, t_0), \quad F_x(x_0, t_0), \quad F_t(x_0, t_0), \quad F_{xx}(x_0, t_0), \quad F_{xt}(x_0, t_0), \quad F_{tx}(x_0, t_0), \quad F_{tt}(x_0, t_0).
\]

Based on Figure 1 for each of the seven quantities listed above determine whether it is positive or negative.

![Figure 1: An oscillating string](image)

2. The goal of this problem is to make the cheapest storage box with a fixed volume, as shown in Figure 2. For simplicity we can assume that the fixed volume is 1 cubic unit. As you can see in Figure 2 the storage box is build on a side of a house. It has three vertical “walls” made of chain-link fencing and the roof. The roofing material costs three times as much (per square unit) as chain-link fencing. Find the dimensions (depth, width and height) of the storage box that will minimize the cost of the materials.

Give both: exact and approximate values for the dimensions of the box.

Use the **second derivative test** to confirm that the point you obtained is a local minimum.

![Figure 2: A storage](image)

3. Consider the function \(F(x, y) = 4x\sqrt{y} - 4\ln(xy) \). (You can think of \(F \) as being a temperature at each point of a heated plate.) Consider the point \(P = (4, 1) \).

(a) Find the vector in the direction of maximum rate of change of \(F \) at the point \(P \). What is the maximum rate of change of \(F \)?

(b) Find the instantaneous rate of change of \(F \) as you leave \(P \) heading toward the point \((2, 3) \).

(c) Find a vector in a direction in which the rate of change of \(F \) at \(P \) is 0.

4. Consider the hyperboloid \(x^2 + y^2 - z^2 = 1 \). Is there a point on this hyperboloid at which the tangent plane to the hyperboloid is parallel to the plane \(x + y + z = 0 \)? If so, find it, if not explain why not. If there is more than one such point find all of them.
1. \(F(x_0, t_0) < 0 \) position is below x-axis
 \(F_x(x_0, t_0) > 0 \) the slope of the string is >0
 \(F_t(x_0, t_0) > 0 \) the string's position is increasing

 \(F_{xx}(x_0, t_0) > 0 \) the string is waving.
 \(F_{xt}(x_0, t_0) < 0 \) the slope is decreasing.
 \(F_{tx}(x_0, t_0) < 0 \) the velocity is decreasing with increasing x
 \(F_{tt}(x_0, t_0) > 0 \) the string is speeding up.

2. \(3xy + 2xz + yz \rightarrow \) is the cost of material
 \(xyzt = 1 \) volume
 \(z = \frac{1}{xy} \)
 \[C(x, y) = 3xy + \frac{2}{y} + \frac{1}{x} \]
2) Find CR-s:

\[\begin{align*}
 C_x &= 3y - \frac{1}{x^2} = 0 \\
 C_y &= 3x - \frac{2}{y^2} = 0
\end{align*} \]

Solve for \(x, y > 0 \).

\[y = \frac{1}{3x^2} \Rightarrow 3x - \frac{2}{9x^4} = 0 \]

\[6x^3 = 1 \Rightarrow x = \frac{1}{3} \sqrt[3]{6} \]

\[y = \frac{1}{3} \text{ in } 6^{2/3} = \frac{6^{2/3}}{3} = \frac{2}{3} = \frac{2^{2/3}}{3^{1/3}} = \sqrt[3]{4/3} \]

\[z = \frac{1}{3} \Rightarrow \frac{1}{z^{3/2}} = \frac{1}{3^{3/2}} = \frac{1}{3} \sqrt[3]{6} \]

\[\frac{1}{z^{3/2}} \times y = \frac{1}{3^{3/2}} \times \frac{1}{3x^2} = \frac{1}{3} \sqrt[3]{6} \]

The second derivative test

\[C_{xx} = \frac{2}{x^3}, \quad C_{xy} = 3, \quad C_{yy} = \frac{4}{y^3} \]

\[D = \frac{8}{(xy)^3} - 9 = \frac{8}{27} \cdot 9 - 9 = \frac{36 - 9}{3} > 0 \]
\[F_x = 4\sqrt{y} - \frac{4}{x} \quad \text{at } (4,1) \]
\[F_y = \frac{2x}{\sqrt{y}} - \frac{4}{y} \]

(a) \[(\nabla F)(4,1) = 3\hat{i} + 4\hat{j} \]
\[\| (\nabla F)(4,1) \| = 5 \]

- direction of max change
- max rate of change

(c) \[2\hat{i} + 3\hat{j} - (4\hat{i} + \hat{j}) = -2\hat{i} + 2\hat{j} \]
\[\mathbf{u} = \frac{1}{\sqrt{2}} (3\hat{i} + \hat{j}) \]
\[\mathbf{u} \cdot \nabla F = -\frac{3}{\sqrt{2}} + \frac{4}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \]

(c) One such vector is \(-4\hat{i} + 3\hat{j}\) or another one \(4\hat{i} - 3\hat{j}\), orthogonal to \((\nabla F)(4,1)\).
\[\mathbf{N} = \mathbf{\hat{z}} + \mathbf{\hat{y}} + \mathbf{\hat{e}} \]

Set \(H(x,y,z) = x^2 + y^2 - z^2 \)

(\(\nabla H \))(x,y,z) = 2x\mathbf{\hat{x}} + 2y\mathbf{\hat{y}} - 2z\mathbf{\hat{z}}

Is it possible to find \(\lambda \) such that

\[2x\mathbf{\hat{x}} + 2y\mathbf{\hat{y}} = 2z\mathbf{\hat{z}} = \lambda (\mathbf{\hat{x}} + \mathbf{\hat{y}} + \mathbf{\hat{z}}) \]

or

\[2x = \lambda \Rightarrow x = \frac{\lambda}{2} \]

\[2y = \lambda \Rightarrow y = \frac{\lambda}{2} \]

\[-2z = \lambda \Rightarrow z = -\frac{\lambda}{2} \]

We need

\[x^2 + y^2 - z^2 = 1 \]

So

\[\frac{x^2}{4} + \frac{y^2}{4} - \frac{z^2}{4} = 1 \]

Thus \(\lambda^2 = 4 \) or \(\lambda = 2 \) or \(\lambda = -2 \)

This gives us two points

\((1,1,-1) \) and \((-1,-1,1) \).

At these two points tangent plane to hyperboloid are \(\parallel \) to the given plane.