Proposition 2.1.5. Let a and b be integers, not both zero. Then any common divisor of a and b is a divisor of $\gcd(a, b)$.

Proof. The cast of characters in this proof:

- Integers a and b such that $a^2 + b^2 > 0$.
- By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set $g = \gcd(a, b)$.
- An integer c such that $|c|a$ and $|c|b$.
- The previous line gives rise to two more characters: The integers u and v such that $a = cu$ and $b = cv$. The previous line gives also more information about c: $c \neq 0$.

The quest in this proof is $|c|g$. Or, more specifically the quest is $c \neq 0$ and an integer z such that $g = cz$.

Now we start with the proof. By Theorem 2.1.3 there exist integers x and y such that

$$ax + by = g.$$

This is a quite dramatic scene, and the characters u and v demand the stage:

$$(cu)x + (cv)y = g.$$

But, the associativity of multiplication yields

$$c(ux) + c(vy) = g,$$

and distributive law now gives

$$c(ux + vy) = g.$$

At this point our quest is finished in a color coordinated solution

$$z = ux + vy.$$

Since also $c \neq 0$, the quest is successfully completed.

\[\Box \]
Proposition 2.1.7. Let a and b be positive integers. Then any common multiple of a and b is a multiple of $\text{lcm}(a, b)$.

Proof. The cast of characters in this proof:

(I) Positive integers a and b.

(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b. Set $m = \text{lcm}(a, b)$.

(III) The previous line, that is the phrase common multiple hides two more characters: the integers j and k such that $m = aj$ and $m = bk$.

(IV) It is important to notice the following character feature of m: It is the least positive common multiple of a and b. What this means is the following

If an integer x is a common multiple of of a and b and $x < m$, then $x \leq 0$.

(V) An integer c which is a common multiple of a and b.

(VI) The previous line gives rise to two more characters: The integers u and v such that $c = au$ and $c = bv$.

The quest in this proof is $m | c$. Or, more specifically the quest is $m \neq 0$ and an integer z such that $c = mz$.

Now we start with the proof. In fact we start with a brilliant idea to use Proposition 1.4.1. This proposition is applied to the integers c and $m > 0$. By Proposition 1.4.1 there exist integers q and r such that

$$c = mq + r \quad \text{and} \quad 0 \leq r \leq m - 1.$$

What we learn about r from the previous line is that $r < m$. But, there is more action waiting to be unfolded here. Follow the following two sequences of equalities (all the green equalities!):

$$r = c - mq = au - mq = au - (aj)q = a(u - jq)$$
$$r = c - mq = bv - mq = bv - (bk)q = b(v - kq).$$

The conclusion is: r is a common multiple of a and b. But wait, also $r < m$. Now the item (IV) in the cast of characters (in fact the character feature of m) implies that $r \leq 0$. Since also $r \geq 0$, we conclude $r = 0$. Going back to the equality $c = mq + r$ we conclude that $c = mq$. At this point our quest is completed in a color coordinated solution

$$z = q.$$

\square
Proposition 2.1.10. If a and b are positive integers, then $ab = \gcd(a, b) \cdot \lcm(a, b)$.

Proof. The cast of characters in this proof:

(I) Positive integers a and b.

(II) By Proposition 1.3.9 there exists a least positive common multiple of a and b. Set $m = \lcm(a, b)$.

(III) The previous line, that is the phrase common multiple hides two more characters: the integers j and k such that $m = aj$ and $m = bk$.

(IV) It is important to notice the following character feature of m: It is the least positive common multiple of a and b. What this means is the following

If an integer x is a common multiple of a and b and $x > 0$, then $m \leq x$.

(V) By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set $g = \gcd(a, b)$.

(VI) The previous line gives rise to two more characters: The integers u and v such that $a = gu$ and $b = gv$. Since $a > 0$, $b > 0$ and $g > 0$, we conclude that $u > 0$ and $v > 0$.

The quest in this proof is simple. $ab = mg$.

Now we start with the proof. Consider a new green integer $c = guv$. Clearly

$c = guv = av$ and $c = guv = bv$.

Hence $c = av$ and $c = bv$. That is c is a common multiple of a and b. Moreover, $c > 0$. Now the item (IV) in the cast of characters (in fact the character feature of m) implies that $m \leq c$.

Hence $m \leq guv$. Multiplying both sides of this inequality by $g > 0$ we get

$mg \leq guvg = gugv = ab$.

Hence $mg \leq ab$. This is in some sense one half of the quest. For the second half, we recall Theorem 2.1.3 and conclude that there exist integers x and y such that

$ax + by = g$.

Multiplying both sides of this equality by $m > 0$ we get $mg = max + mby$. Now more characters are demanding the scene:

$mg = max + mby = (bk)ax + (aj)by = ab(kx) + ab(jy) = ab(kx + jy)$.

Since $mg > 0$ and $ab > 0$, I conclude $kx + jy > 0$. Therefore $mg \geq ab$. This is the second half of the quest. So, the quest is completed.