Sverdrup’s (1953) critical depth concept

Important points:
1. D_c and D_m independent
2. R = community respiration
3. Light, not nutrients, limiting
4. Links to papers in Canvas
5. Not the whole story

Hug et al. 2016. *Nature Microbiology*

Traditional view (16SrRNA)

Genomic sequencing

Food-web model (or energy-flow, bottom-up view):

Nutrients, etc. → Phytoplankton → Zooplankton → Fish, Birds, Mammals

Microbes → Microzooplankton

Benthos

Size matters: Microbes in the ocean

A. Who are the microbes and why are they important?
B. Microbial nutrition
C. Microbial Production
D. Microbial consumption and the microbial loop

Take-home message: Microbes rule
Prokaryotes versus Eukaryotes

- **Prokaryote**
 - Bacteria and archaea

- **Eukaryote**
 - Eukaryotes (including protozoa)

How do you study these organisms?

- Most marine bacteria (> 99%) have never been cultured
- Count bacteria by nuclear staining (DAPI, Acridine orange)
- Count them using flow cytometry
- Determine production using labeled nucleotides or amino acids
- Clone DNA from the ocean and sequence 16S rRNA or genomic DNA
- Perform experiments to determine microbial functions

Marine microbial genomics

- Pure culture genomics (right)
 - Get DNA from cultured organisms
- Metagenomics (left)
 - Get DNA from natural communities in seawater
 - Comparisons between culture and seawater DNA allow researchers to infer function

Roles microbes play in the ocean - food

- Photoautotrophs – cyanobacteria
 - *Synechococcus*
 - *Trichodesmium* (N-fixer)
 - *Prochlorococcus* (perhaps the most abundant photosynthetic organism in the world, unknown < 1988)
 - Total #: 10^5 cells/ml*10^22 ml in top 50m = 10^27 in ocean
- Photoheterotrophs – cyanobacteria and other bacteria
- Heterophs – bacteria and archaea
- Chemoautotrophs – archaea and bacteria
- Grazers – eukaryotes (microzooplankton)
- Viruses – Control prey populations
Roles microbes play in the ocean - nutrients

- Viruses – Release nutrients from prey via cell lysis
- Nitrogen fixation – cyanobacteria
- Nitrification – bacteria and archaea
- Denitrification – bacteria and archaea

Wild metabolic processes in bacteria & archaea

- Chemoautotrophs: Fe- and Mn-oxidizing, sulfur oxidizing, nitrifying
- Heterotrophs: Aerobic
 Nitrate-reducing
 Iron and manganese reducing
 Sulfate reducing
 Fermentative \((\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow 2 \text{CH}_3\text{CH}_2\text{OH} + 2 \text{CO}_2) \)
 Methane-producing

Importance of microbes in the sea: Productivity

Old View: “net phytoplankton” responsible for productivity and zooplankton most important for OM consumption

Newer View:
- “Nanoplankton” (< 60μm) most important for primary production in the open ocean
- Microbes most important for respiration
- Non-living matter (DOC, POC detritus) is an important food resource in the ocean

Sherr and Sherr article

Consumption of microbes and the “Microbial loop”
Microbial loop: Recovery of DOC by growth and consumption of microbes

- Major grazers: small (< 5 mm) flagellates
- Minor grazers: larvaceans, pteropods, copepod larvae

How efficient? Is it a carbon “sink” or “link”? Many links in the microbial loop – inefficient (only returns a few percent of carbon to the zooplankton and fish)

But, may stabilize food web during periods of low phytoplankton productivity

Microzooplankton grazing rates as fast or faster than macrozooplankton rates.

Fe limitation and phytoplankton blooms

- Many open ocean areas do not experience spring blooms (Gulf of Alaska, Southern Ocean)
- These areas are dominated by small phytoplankton
- Large diatoms are rare due to Fe limitation (smaller cells take up Fe more efficiently due to large S:V ratio)
- Microzooplankton “keep up” with phytoplankton to prevent blooms
- Microzooplankton do not produce fecal pellets increasing nutrient cycling efficiency