Grazing phytoplankton: Size matters

I. Microzooplankton grazing
II. Types of mesozooplankton
III. Zooplankton grazing at low Reynolds numbers
IV. Zooplankton food webs
V. Zooplankton, phytoplankton, and biogeochemistry

Herbivorous zooplankton: Grazers

- Herbivores: feed primarily on phytoplankton
- Carnivores: feed primarily on other zooplankton (animals)
- Detrivores: feed primarily on dead organic matter (detritus)
- Omnivores: feed on mixed diet of plants and animals and detritus

Zooplankton nutrition
Zooplankton size classifications

- **Microzooplankton**: Single celled (protists) that eat phytoplankton and bacteria (< 0.2 mm)
 - Microzooplankton: Ciliates – eat flagellates
 - Nanozooplankton: dinoflagellates and flagellates – eat bacteria and small phytoplankton
 - Amoebas: Radiolaria and foraminifera
- **Mesozooplankton**: 0.2 mm to 30 mm (averaging about the size of a rice grain). These include all nutritional modes
- **Macrozooplankton**: > 1 cm. All nutritional modes.

Microzooplankton grazing:

How can you determine rates of grazing by microbes in the sea?

Dilution method:

\[
\ln\left(\frac{P_t}{P_0}\right)/t = \mu - g D
\]

- \(\mu\) = prey specific growth rate, \(d^{-1}\) (density independent)
- \(g\) = community grazing rate, \(d^{-1}\) (density dependent)
- \(D\) = dilution

Graph:

![Graph showing dilution vs. apparent growth rate](image)

Equations:

\[
\text{Slope} = g, \text{ community grazing rate} \ (d^{-1})
\]

Intercept = \(\mu\), specific growth rate \(d^{-1}\) of prey

Grazing rates high during blooms (periods with high growth rates)

References:

- Strom et al. 2001

Phytoplankton growth and grazing at a station in the San Juan Islands

Graph:

![Graph showing growth and grazing comparison](image)

Legend:

- Growth or grazing rate \(d^{-1}\)
- Months: Nov, Feb, May, Aug

Fig. 3 Seasonal cycle in phytoplankton growth (solid bars) and microzooplankton grazing (open bars) in northern Puget Sound data (for total chlorophyll only). Compilation of data from two different years.

Strom et al. 2001

Grazing rates high during blooms (periods with high growth rates)

Small phytoplankton grazed at higher rates than large phytoplankton

Graph:

![Graph showing small vs. large phytoplankton grazing rates](image)

Legend:

- Total, >5 µm, <8 µm
- Months: Nov, Feb, May, Aug

Strom et al. 2001

Could grazing contribute to diatom dominance in Puget Sound?
Visualizing copepod grazing

- https://www.youtube.com/watch?v=5RZwLbRd3b4

Zooplankton grazing on phytoplankton (copepods)

Old view: Copepods fed with “sieves”
 Collected algae by filter feeding

New View: Copepods pick individual cells out of the water
 Locate cells by following chemical “plumes”

 Zooplankton feed at low Reynold’s numbers:
 Impossible to “sieve” water at this scale
Reynolds numbers and fluid flow

\[\text{Re} = \frac{L \cdot v}{\nu} \]

(length)(velocity)
(ynamic viscosity)

\[\text{Re} < 10: \text{Laminar} \]
\[\text{Re} > 10^4: \text{Turbulent} \]
\[10 < \text{Re} < 10^4: \text{Transitional} \]

(depending upon geometry)
For pipes, transitional flow: \(\sim 2000 < \text{Re} < \sim 4000 \)

Zooplankton feeding at low Reynolds numbers

Reynolds number: \(\text{Re} = \frac{\text{length} \cdot \text{velocity} \cdot \text{viscosity}}{\nu} \)

[m] \(\times \) [m/s] / [m^2/s]

Seawater kinematic viscosity = 10^-6 m^2/s (at 20 °C)

Flow around a phytoplankton cell:
\(\text{Re} = 10 \times 10^{-6} \text{[m]} 1 \text{[m/s]} / 10^{-6} \text{[m}^2\text{/s]} = 10 \) (laminar)

Flow around a zooplankter:
Feeding: \(\text{Re} = 20 \times 10^{-6} \text{[m]} 50 \times 10^{-3} \text{[m/s]} / 10^{-6} \text{[m}^2\text{/s]} = 1 \) (laminar)
Swimming: \(\text{Re} = 1 \times 10^{-3} \text{[m]} 0.1 \text{[m/s]} / 10^{-6} \text{[m}^2\text{/s]} = 100 \) (~transitional) (bursts)

Examples of Reynolds numbers of flow around organisms

\[\text{Re} \]

A large whale swimming at 10 m s^-1 300,000,000.
A tuna swimming at the same speed 30,000,000.
A duck flying at 20 m s^-1 300,000.
A large dragonfly going 7 m s^-1 30,000.
A copepod in a pulse of 20 cm s^-1 300.
Flight of the smallest flying insects 30.
An invertebrate larva, 0.3 mm long, moving at 1 mm s^-1 0.3.
A sea urchin sperm advancing the species at 0.2 mm s^-1 0.03.

From Vogel 1981
Predacious copepods: Euchaeta
Impales prey with modified feeding appendages
Locates prey by sensing vibrations

Movies of copepod feeding and feeding currents
http://www.youtube.com/watch?v=Ggk2O7p4yWQ&feature=endscreen
http://www.youtube.com/watch?v=s0Zc15KZS00

Diel vertical migration of zooplankton
Example: *Euchaeta* in Puget Sound
(Ohman 1990)
Phytoplankton, zooplankton, and nitrogen cycling in the open sea

Phytoplankton production

Zooplankton grazing

Regenerated production

NH$_4^+$, NO$_3^-$

NH$_4^+$

New production

Deep water mixing

Vertical migration by zooplankton efficiently delivers nutrients to deep water

Zooplankton contribution to carbon cycling and the biological pump

CO$_2$ enters ocean and equilibrates with carbonates (→ HCO$_3^-$)

Phytoplankton production converts HCO$_3^-$ to particulate organic C

Zooplankton grazing

CO$_2$

Return of CO$_2$ to atmosphere via gas exchange

HCO$_3^-$

Dissolved organic carbon (DOC)

Loss of particulate organic C from surface water

Vertical migration by zooplankton

Size matters