Stirling Numbers of the 1st Kind

Daniel Reiss, Colebrook Jackson, Brad Dallas

Western Washington University

November 28, 2012
The set of all permutations of a set N is denoted $S(N)$, while the set of all permutations of \{1, 2, \ldots, n\} is denoted $S(n)$.

A permutation $\sigma \in S(n)$ is a bijective mapping whose canonical notation is

$$\sigma = \begin{pmatrix} 1 & 2 & \ldots & n \\ \sigma(1) & \sigma(2) & \ldots & \sigma(n) \end{pmatrix}.$$

We call $\sigma = \sigma(1) \sigma(2) \ldots \sigma(n)$ the word representation of σ.
With composition $S(n)$ forms the symmetric group of order n. We read a product always from right to left, thus for

$$\sigma = \begin{pmatrix} 123456 \\ 234165 \end{pmatrix}, \quad \tau = \begin{pmatrix} 123456 \\ 134526 \end{pmatrix},$$

we have

$$\tau\sigma = \begin{pmatrix} 123456 \\ 345162 \end{pmatrix}, \quad \text{and} \quad \sigma\tau = \begin{pmatrix} 123456 \\ 241635 \end{pmatrix}.$$

For example, $3 \to \tau(\sigma(3)) = \tau(4) = 5.$
Another way to describe σ is by its cycle decomposition.

For every i, the sequence $i, \sigma(i), \sigma^2(i), \ldots$ must eventually terminate with, say, $\sigma^k(i) = i$.

We denote the cycle containing i by $(i, \sigma(i), \sigma^2(i), \ldots, \sigma^{k-1}(i))$.

Repeating this for all elements, we arrive at the cycle decomposition $\sigma = \sigma_1 \sigma_2 \cdots \sigma_t$.
Example. (i). \(\sigma = \begin{pmatrix} 12345678 \\ 35146827 \end{pmatrix} \) has word representation \(\sigma = 35146827 \) and cycle form \(\sigma = (13)(25678)(4) \).

(ii). \(\sigma = \begin{pmatrix} 12345678 \\ 12354786 \end{pmatrix} \) has word representation \(\sigma = 12354786 \) and cycle form \(\sigma = (1)(2)(3)(45)(678) \).
Cycle Decomposition

- We may start a cycle with any element in the cycle. Thus, (2568) and (8256) are the same cycle.
- Order of cycles is irrelevant.
- Cycles of length 1 are fixed points in \(\sigma \).
- Cycles of length 2 are transpositions \(i \leftrightarrow j \).
- A permutation with only 1 cycle is called cyclic. There are \((n - 1)\) cyclic permutations of \(n \).
Stirling Numbers of the First Kind

The Stirling number $s(n, k)$ of the first kind is the number of permutations of an n-set with precisely k cycles.

Define $s(0, 0) = 1$ and $s(0, k) = 0$ for $k > 0$.

Several different notations for the Stirling numbers are in use. Stirling numbers of the first kind are written with a small s, and those of the second kind with a large S. The Stirling numbers of the second kind are never negative, but those of the first kind can be negative; hence, there is a separate notation for the unsigned Stirling numbers of the first kind.
Common notations for the Stirling numbers include:

- \(s(n, k) = s_{n,k} = \genfrac{[}{]}{0pt}{}{n}{k}(-1)^{n-k} \)
 for the ordinary signed Stirling numbers of the first kind

- \(c(n, k) = \genfrac{[}{]}{0pt}{}{n}{k} = |s(n, k)| \)
 for the unsigned Stirling numbers of first kind

- \(S(n, k) = \genfrac{}{}{0pt}{}{n}{k} = S^{(k)}_n = S_{n,k} \)
 for the Stirling numbers of the second kind

Note: Aigner uses \(s_{n,k} \) for the signless Stirling numbers and for this presentation we will use \(s(n, k) \) for the signless Stirling numbers.
The table lists the first values of the Stirling matrix $s(n, k)$.

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>24</td>
<td>50</td>
<td>35</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td>120</td>
<td>274</td>
<td>225</td>
<td>85</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0</td>
<td>720</td>
<td>1764</td>
<td>1624</td>
<td>735</td>
<td>175</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0</td>
<td>5040</td>
<td>13068</td>
<td>13132</td>
<td>6769</td>
<td>1960</td>
<td>322</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

Stirling numbers of the first kind $s(n, k)$
A useful graphical representation is to interpret $\sigma \in S(n)$ as a directed graph with $i \rightarrow j$ if $j = \sigma(i)$. The following graphs illustrate the Stirling numbers $s(5, k)$ for $k = 1, \ldots, 5$.

$s(5, 1) = 24$ (5 objects with 1 cycle)
$s(5, 2) = 50$ (5 objects with 2 cycles)
\[s(5, 3) = 35 \quad (5 \text{ objects with } 3 \text{ cycles}) \]
\[s(5, 4) = 10 \quad \text{(5 objects with 4 cycles)} \]

\[s(5, 5) = 1 \quad \text{(5 objects with 5 cycles)} \]
The Stirling numbers, $s(n, k)$, satisfy the recurrence relation:

$$s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k) \quad (n \geq 1)$$

with initial conditions $s(0, 0) = 1$ and $s(n, 0) = s(0, n) = 0$, $n > 0$.
Proof.

Consider forming a new permutation with n objects from a permutation of $n-1$ objects by adding a distinguished object. There are exactly two ways in which this can be accomplished.

First, we could form a singleton cycle, leaving the extra object fixed. This increases the number of cycles by 1 and so accounts for the $s(n-1, k-1)$ term in the recurrence.

Second, we could insert the object into one of the existing cycles. Consider an arbitrary permutation of $n-1$ objects with k cycles. To form the new permutation, we insert the new object before any of the $n-1$ objects already present. This explains the $(n-1)s(n-1, k)$ term of the recurrence.

These two cases include all of the possibilities, so the recurrence relation follows with the given initial conditions.
The Stirling numbers, \(s(n, k) \), satisfy the following identities:
The Stirling numbers, $s(n, k)$, satisfy the following identities:

1. $s(n, k) = s(n-1, k-1) + (n-1)s(n-1, k)$

Combinatorics

Stirling Numbers of the 1st Kind
The Stirling numbers, \(s(n, k) \), satisfy the following identities:

\[
\begin{align*}
\quad s(n, k) &= s(n - 1, k - 1) + (n - 1)s(n - 1, k) \\
\sum_{k=0}^{n} s(n, k) &= n!
\end{align*}
\]
The Stirling numbers, $s(n, k)$, satisfy the following identities:

- $s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k)$
- $\sum_{k=0}^{n} s(n, k) = n!$
- $s(n, 1) = (n - 1)!$
The Stirling numbers, \(s(n, k) \), satisfy the following identities:

- \(s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k) \)
- \(\sum_{k=0}^{n} s(n, k) = n! \)
- \(s(n, 1) = (n - 1)! \)
- \(s(n, n) = 1 \)
The Stirling numbers, \(s(n, k) \), satisfy the following identities:

- \(s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k) \)
- \(\sum_{k=0}^{n} s(n, k) = n! \)
- \(s(n, 1) = (n - 1)! \)
- \(s(n, n) = 1 \)
- \(s(n, n - 1) = \binom{n}{2} \)
The Stirling numbers, $s(n, k)$, satisfy the following identities:

- $s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k)$
- $\sum_{k=0}^{n} s(n, k) = n!$
- $s(n, 1) = (n - 1)!$
- $s(n, n) = 1$
- $s(n, n - 1) = \binom{n}{2}$
- $s(n, n - 2) = \frac{1}{4}(3n - 1)\binom{n}{3}$
The Stirling numbers, $s(n, k)$, satisfy the following identities:

- $s(n, k) = s(n - 1, k - 1) + (n - 1)s(n - 1, k)$
- $\sum_{k=0}^{n} s(n, k) = n!$
- $s(n, 1) = (n - 1)!$
- $s(n, n) = 1$
- $s(n, n - 1) = \binom{n}{2}$
- $s(n, n - 2) = \frac{1}{4}(3n - 1)\binom{n}{3}$
- $s(n, n - 3) = \binom{n}{2}\binom{n}{4}$
Proof.

The recursion has already been established so we prove first that

\[\sum_{k=0}^{n} s(n, k) = n! . \]
Proof.

The recursion has already been established so we prove first that

\[\sum_{k=0}^{n} s(n, k) = n! \].

We proceed by induction on \(n \).
Proof.

The recursion has already been established so we prove first that

\[\sum_{k=0}^{n} s(n, k) = n!. \]

We proceed by induction on \(n \). The case when \(n = 0 \) is trivially true since \(s(0, 0) = 1 = 0! \).
Proof.

The recursion has already been established so we prove first that
\[\sum_{k=0}^{n} s(n, k) = n!. \]

We proceed by induction on \(n \). The case when \(n = 0 \) is trivially true since \(s(0, 0) = 1 = 0! \). Now we assume that the summation is true for \(n = \ell \). That is,
\[\sum_{k=0}^{\ell} s(\ell, k) = \ell!. \]
Proof.

The recursion has already been established so we prove first that

$$\sum_{k=0}^{n} s(n, k) = n!.$$

We proceed by induction on n. The case when $n = 0$ is trivially true since $s(0, 0) = 1 = 0!$. Now we assume that the summation is true for $n = \ell$. That is,

$$\sum_{k=0}^{\ell} s(\ell, k) = \ell!.$$

For $n = \ell + 1$ we have,
Proof.

\[
\sum_{k=0}^{\ell+1} s(\ell + 1, k) = \sum_{k=0}^{\ell+1} \left(s(\ell, k - 1) + \ell s(\ell, k) \right)
\]

\[
= \sum_{k=0}^{\ell+1} s(\ell, k - 1) + \ell \sum_{k=0}^{\ell+1} s(\ell, k)
\]

\[
= \sum_{k=1}^{\ell+1} s(\ell, k - 1) + \ell \sum_{k=0}^{\ell+1} s(\ell, k)
\]

\[
= \sum_{k=0}^{\ell} s(\ell, k) + \ell \sum_{k=0}^{\ell} s(\ell, k)
\]

\[
= \ell! + \ell(\ell!) = (\ell + 1)!
\]

This completes the inductive step and the proof of the claim.
Proof.

\[
\sum_{k=0}^{\ell+1} s(\ell + 1, k) = \sum_{k=0}^{\ell+1} \left(s(\ell, k - 1) + \ell s(\ell, k) \right)
\]

\[
= \sum_{k=0}^{\ell+1} s(\ell, k - 1) + \ell \sum_{k=0}^{\ell+1} s(\ell, k)
\]

\[
= \sum_{k=1}^{\ell+1} s(\ell, k - 1) + \ell \sum_{k=0}^{\ell+1} s(\ell, k)
\]

\[
= \sum_{k=0}^{\ell} s(\ell, k) + \ell \sum_{k=0}^{\ell} s(\ell, k)
\]

\[
= \ell! + \ell \ell! = (\ell + 1)!
\]

This completes the inductive step and the proof of the claim. \(\square\)
Proof.

We now show the remaining claims starting with the second which says that $s(n, 1) = (n - 1)!$.

Consider $s(n, n-1)$. To count these permutations we need only choose which 2 of $\{1, \ldots, n\}$ are going to share a cycle while the others are represented by a singleton cycle. Thus, $s(n, n-1) = \binom{n}{2}$.

Combinatorics
Stirling Numbers of the 1st Kind
Proof.

We now show the remaining claims starting with the second which says that $s(n, 1) = (n - 1)!$. Permute $\{1, \ldots, n\}$ in one cycle. There are $n!$ ways to do this. Since we can start at any one of the values in a given cycle we have overcounted the total by a factor of n. Thus,

$$s(n, 1) = (n - 1)!.$$
Proof.

We now show the remaining claims starting with the second which says that \(s(n, 1) = (n - 1)! \). Permute \(\{1, \ldots, n\} \) in one cycle. There are \(n! \) ways to do this. Since we can start at any one of the values in a given cycle we have overcounted the total by a factor of \(n \). Thus,

\[
s(n, 1) = (n - 1)!.\]

The proof that \(s(n, n) = 1 \) is trivial.
Proof.

We now show the remaining claims starting with the second which says that \(s(n, 1) = (n - 1)! \). Permute \(\{1, \ldots, n\} \) in one cycle. There are \(n! \) ways to do this. Since we can start at any one of the values in a given cycle we have overcounted the total by a factor of \(n \). Thus,

\[
s(n, 1) = (n - 1)!. \]

The proof that \(s(n, n) = 1 \) is trivial. Consider now \(s(n, n - 1) \). To count these permutations we need only choose which 2 of \(\{1, \ldots, n\} \) are going to share a cycle while the others are represented by a singleton cycle. Thus,

\[
s(n, n - 1) = \binom{n}{2}. \]
The remaining two have similar combinatorial arguments but require a little algebra to get the desired form.

\[s(n, n-2) = \frac{1}{4} (3n-1) \binom{n}{3} \]
The remaining two have similar combinatorial arguments but require a little algebra to get the desired form.

\[s(n, n - 2) = \frac{1}{4} (3n - 1) \binom{n}{3} \]

\[s(n, n - 3) = \binom{n}{2} \binom{n}{4} \]
The Stirling numbers also appear in the following relationships:
The Stirling numbers also appear in the following relationships:

- \(s(n, 2) = (n - 1)!H_{n-1} \)
 where \(H_{n-1} \) is the \((n - 1)\)st Harmonic number
The Stirling numbers also appear in the following relationships:

- \(s(n, 2) = (n - 1)! H_{n-1} \)
 where \(H_{n-1} \) is the \((n - 1)\)st Harmonic number

- \(\sum_{k=0}^{n} (-1)^{n-k} s(n, k)x^k = x^n \)
The Stirling numbers also appear in the following relationships:

- \(s(n, 2) = (n - 1)!H_{n-1} \)
 where \(H_{n-1} \) is the \((n - 1)\)st Harmonic number

- \(\sum_{k=0}^{n} (-1)^{n-k} s(n, k)x^k = x^n \)

- \(\sum_{n \geq 0} s(j, n)S(n, k) = \delta_{jk} \)
Proof.

We start with the first claim.
Proof.

We start with the first claim. To compute $s(n, 2)$, we make use of the recurrence. Dividing by $(n - 1)!$ we obtain,

$$s(n, 2) = \frac{(n - 2)!}{(n - 1)!} + \frac{(n - 1)s(n - 1, 2)}{(n - 1)!} = s(n - 1, 2) + \frac{1}{n - 1},$$

By repeated iteration we arrive at the following,

$$s(n, 2) = \frac{1}{n - 1} + \frac{1}{n - 2} + \cdots + \frac{1}{2} + 1 = H_{n - 1}.$$

Multiplying by $(n - 1)!$ completes the proof.
Proof.

We start with the first claim. To compute $s(n, 2)$, we make use of the recurrence. Dividing by $(n - 1)!$ we obtain,

$$\frac{s(n, 2)}{(n - 1)!} = \frac{(n - 2)!}{(n - 1)!} + \frac{(n - 1)s(n - 1, 2)}{(n - 1)!} = \frac{s(n - 1, 2)}{(n - 2)!} + \frac{1}{n - 1}.$$
Proof.

We start with the first claim. To compute \(s(n, 2) \), we make use of the recurrence. Dividing by \((n - 1)!\) we obtain,

\[
\frac{s(n, 2)}{(n - 1)!} = \frac{(n - 2)!}{(n - 1)!} + \frac{(n - 1)s(n - 1, 2)}{(n - 1)!} = \frac{s(n - 1, 2)}{(n - 2)!} + \frac{1}{n - 1}.
\]

By repeated iteration we arrive at the following,
Proof.

We start with the first claim. To compute $s(n, 2)$, we make use of the recurrence. Dividing by $(n - 1)!$ we obtain,

\[
\frac{s(n, 2)}{(n - 1)!} = \frac{(n - 2)!}{(n - 1)!} + \frac{(n - 1)s(n - 1, 2)}{(n - 1)!} = \frac{s(n - 1, 2)}{(n - 2)!} + \frac{1}{n - 1}.
\]

By repeated iteration we arrive at the following,

\[
\frac{s(n, 2)}{(n - 1)!} = \frac{1}{n - 1} + \frac{1}{n - 2} + \cdots + \frac{1}{2} + \frac{1}{1} = H_{n-1}.
\]
Proof.

We start with the first claim. To compute $s(n, 2)$, we make use of the recurrence. Dividing by $(n - 1)!$ we obtain,

$$\frac{s(n, 2)}{(n - 1)!} = \frac{(n - 2)!}{(n - 1)!} + \frac{(n - 1)s(n - 1, 2)}{(n - 1)!} = \frac{s(n - 1, 2)}{(n - 2)!} + \frac{1}{n - 1}.$$

By repeated iteration we arrive at the following,

$$\frac{s(n, 2)}{(n - 1)!} = \frac{1}{n - 1} + \frac{1}{n - 2} + \cdots + \frac{1}{2} + \frac{1}{1} = H_{n-1}.$$

Multiplying by $(n - 1)!$ completes the proof.
Next we would like to show that

\[x^n = \sum_{k=0}^{n} (-1)^{n-k} s(n, k) x^k \]
Next we would like to show that

\[x^n = \sum_{k=0}^{n} (-1)^{n-k} s(n, k) x^k \]

Proof.

To prove this claim we first show that \(x^n = \sum_{k=0}^{n} s(n, k) x^k \).

We proceed by induction on \(n \).
Next we would like to show that

\[x^n = \sum_{k=0}^{n} (-1)^{n-k} s(n, k)x^k \]

Proof.

To prove this claim we first show that \(x^\bar{n} = \sum_{k=0}^{n} s(n, k)x^k \).

We proceed by induction on \(n \). For \(n = 0 \) and \(n = 1 \) we have that,

\[x^0 = s(0, 0) = 1 \text{ and } x^\bar{1} = s(1, 0) + x s(1, 1) = x. \]
Next we would like to show that

\[x^n = \sum_{k=0}^{n} (-1)^{n-k} s(n, k)x^k \]

Proof.

To prove this claim we first show that \(x^n = \sum_{k=0}^{n} s(n, k)x^k \).

We proceed by induction on \(n \). For \(n = 0 \) and \(n = 1 \) we have that,

\[x^0 = s(0, 0) = 1 \quad \text{and} \quad x^1 = s(1, 0) + x s(1, 1) = x. \]

Now assume the claim is true for \(n = \ell - 1 \). That is,

\[x^{\ell-1} = \sum_{k=0}^{\ell-1} s(\ell - 1, k)x^k. \]
Proof.

For $n = \ell$, we have

\[
x^\ell = x^{\ell-1} (x + \ell - 1)
= x \cdot x^{\ell-1} + (\ell - 1) x^{\ell-1}
= x \sum_{k \geq 0} s(\ell - 1, k) x^k + (\ell - 1) \sum_{k \geq 0} s(\ell - 1, k) x^k
= \sum_{k \geq 0} s(\ell - 1, k) x^{k+1} + (\ell - 1) \sum_{k \geq 0} s(\ell - 1, k) x^k
= \sum_{k \geq 1} s(\ell - 1, k - 1) x^k + (\ell - 1) \sum_{k \geq 0} s(\ell - 1, k) x^k
= \sum_{k \geq 0} \left[s(\ell - 1, k - 1) + (\ell - 1)s(\ell - 1, k) \right] x^k
= \sum_{k \geq 0} s(\ell, k) x^k.
\]
Proof.

By the reciprocity law, we have $x^n = (-1)^n(-x)^n$. Thus,

$$x^n = (-1)^n \sum_{k=0}^{n} s(n, k)(-x)^k$$

$$= \sum_{k=0}^{n} (-1)^{n-k} s(n, k)x^k$$

Combinatorics

Stirling Numbers of the 1st Kind
Proof.
Next we prove the so called inversion formula.

Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal.

Let $A = (a_{i,j})$ and $A^{-1} = (a_{-1}^{-1}(i,j))$. Then a straightforward calculation shows that,

$$\sum_{n \geq 0} a_{j,n} a_{-1}^{-1}(n,k) = \delta_{jk}.$$

Note now that we have the Stirling connection,

$$x^n = \sum_{k \geq 0} S(n,k) x^k \iff x^n = \sum_{k \geq 0} (-1)^{n-k}s(n,k) x^k.$$

This statement implies that the matrices for the signed Stirling numbers of the first kind and the Stirling numbers of the second kind are in fact inverses of one another. This together with the previous establishes the claim.
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal.
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal. Let $A = (a(i,j))$ and $A^{-1} = (a^{-1}(i,j))$.

Note now that we have the Stirling connection,

$$x_n = \sum_{k \geq 0} \binom{n}{k} x_k \iff x_n = \sum_{k \geq 0} (-1)^{n-k} \binom{n}{k} x_k.$$

This statement implies that the matrices for the signed Stirling numbers of the first kind and the Stirling numbers of the second kind are in fact inverses of one another. This together with the previous establishes the claim.
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal. Let $A = (a(i,j))$ and $A^{-1} = (a^{-1}(i,j))$. Then a straightforward calculation shows that,

\[
\sum_{n \geq 0} a(j,n) a^{-1}(n,k) = \delta_{jk}.
\]

Note now that we have the Stirling connection,

\[
x_n = \sum_{k \geq 0} S(n,k) x_k \iff x_n = \sum_{k \geq 0} (-1)^{n-k} s(n,k) x_k.
\]

This statement implies that the matrices for the signed Stirling numbers of the first kind and the Stirling numbers of the second kind are in fact inverses of one another. This together with the previous establishes the claim.
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal. Let $A = (a(i, j))$ and $A^{-1} = (a^{-1}(i, j))$. Then a straightforward calculation shows that,

$$\sum_{n \geq 0} a(j, n)a^{-1}(n, k) = \delta_{jk}.$$
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal. Let $A = (a(i, j))$ and $A^{-1} = (a^{-1}(i, j))$. Then a straightforward calculation shows that,

$$\sum_{n \geq 0} a(j, n)a^{-1}(n, k) = \delta_{jk}.$$

Note now that we have the Stirling connection,

$$x^n = \sum_{k \geq 0} S(n, k)x^k \iff x^n = \sum_{k \geq 0} (-1)^{n-k}s(n, k)x^k.$$
Proof.

Next we prove the so called inversion formula. Let A be an infinite lower triangular matrix. Then A has a unique inverse A^{-1} which is also lower triangular if and only if A has non-zero entries along the main diagonal. Let $A = (a(i, j))$ and $A^{-1} = (a^{-1}(i, j))$. Then a straightforward calculation shows that,

$$
\sum_{n \geq 0} a(j, n)a^{-1}(n, k) = \delta_{jk}.
$$

Note now that we have the Stirling connection,

$$
x^n = \sum_{k \geq 0} S(n, k)x^k \iff x^n = \sum_{k \geq 0} (-1)^{n-k}s(n, k)x^k.
$$

This statement implies that the matrices for the signed Stirling numbers of the first kind and the Stirling numbers of the second kind are in fact inverses of one another. This together with the previous establishes the claim.
A variety of identities may be derived by manipulating the generating function. The following result gives us the exponential generating function for the signed Stirling numbers:
A variety of identities may be derived by manipulating the generating function. The following result gives us the exponential generating function for the signed Stirling numbers:

\[
\sum_{n \geq 0} (-1)^{n-k} s(n, k) \frac{z^n}{n!} = \frac{(\log(1 + z))^k}{k!}
\]
Proof.

We utilize one of our many familiar generating functions as a starting point.
Proof.

We utilize one of our many familiar generating functions as a starting point. We have that

\[(1 + z)^m = \sum_{n \geq 0} \binom{m}{n} z^n\]

\[= \sum_{n \geq 0} \frac{m^n}{n!} z^n\]

\[= \sum_{n \geq 0} \frac{z^n}{n!} \sum_{k \geq 0} (-1)^{n-k} s(n, k) m^k\]

\[= \sum_{k \geq 0} m^k \sum_{n \geq 0} \frac{z^n}{n!} (-1)^{n-k} s(n, k)\]
Proof.
Now we use the following identity,
Proof.

Now we use the following identity,

\[
(1 + z)^m = e^{m \log(1+z)} = \sum_{k \geq 0} (\log(1 + z))^k \frac{m^k}{k!}
\]

Comparing the two we get the desired result.
Proof.

Now we use the following identity,

\[(1 + z)^m = e^{m \log(1 + z)} = \sum_{k \geq 0} (\log(1 + z))^k \frac{m^k}{k!}\]

Comparing the two we get the desired result. \(\square\)

